

Section 1 - Project Information Project Bill of Material	C125D6D
Section 2 - GENERATOR SPEC SHEETS	
Generator Specification Sheet	NAS-6370
Generator Data Sheet	NAD-6371-EN
PowerCommand Control (PCC) Specification Sheet	S-1566
Exhaust Emission Compliance Statement	EPA-2032
Cooling System Data Sheet	MCP-2047
Alternator Data Sheet	ADS-209
Sound Data Sheet	MSP-4007
Fuel Tank Spec Sheets	NAAC-5868
Section 3 - GENERATOR DRAWINGS	
Generator Outline Drawing	
Enclosure Outline Drawing	
	AU57P198
Section 4 - GENERATOR ACCESSORIES	
Battery Charger Specification Sheet	A048G602
Circuit Breaker Installation Drawing	A055B603
J Frame Circuit Breaker Outline Drawing	A050J727
J Frame Circuit Breaker Specification Sheets	SquareD
Seismic Certificate of Compliance	VMA-51070-01C
Seismic Installation Requirements	A058C559
Battery Heater Kit	A054X752
GenSet Options	A060G756
Section 5 - STARTUP & WARRANTY	
Pre-Start up checklist	CSS
Generator Warranty Statement	A028U870

Section 1 – Project Information

March 15, 2023

Bill of Material

Feature Code	Description	Qty
C125D6D	C125D6D, Diesel Genset, 60Hz, 125kW	1
Install-US-Stat	U.S. EPA, Stationary Emergency Application	
C125 D6D	C125D6D, Diesel Genset, 60Hz, 125kW	
A331-2	Duty Rating - Standby Power (ESP)	
L169-2	Emission Certification, EPA, Tier 3, NSPS CI Stationary Emergency	
L090-2	Listing - UL 2200	
L193-2	NFPA 110 Type 10 Level 1 Capable	
L224-2	IBC Seismic Certification	
B184-2	Exciter/Regulator - Permanent Magnet Generator, 3 Phase Sensor	
R002-2	Voltage - 277/480, 3 Phase, Wye, 4 Wire	
BB95-2	Alternator - 60Hz, 12L, 480/277V, 105C, 40C Ambient, Increased Motor Starting (IMS)	
F217-2	Aluminum Sound Attenuated Level 2 Enclosure, with Exhaust System	
P176-2	Enclosure Color - Green, Aluminum	
F252-2	Enclosure - Wind Load 180 MPH, ASCE7 - 10	
F179-2	Skiddase - Housing Ready	
C301-2	Fuel Tank - Regional, Dual Wall, Sub Base, 24 Hour Minimum	
C127-2 C210-2	Fuel Water Separator	
C310-2	Low Fuel Level Switch, 40%	
C312-2	Niechanica Fuel Gauge	
	Switch - Fuel Tank, Rupture Dasin Control Mounting Loft Enging	
	Control Mounting - Left Facility BowerCommand 1.1 Controller	
H012-2		
H606-2	Analog Maters - AC Output	
K706 2	Ston Switch Emocrancy	
KS52-2	Belays - Auxiliary (bty 2, 25A - 15V DC/10A - 30V DC	
H536-2	Control Display Language - English	
K\/03-2		
KX26-2	Circuit Breaker Location & 70A - 250A 3P LSL 600 Volts AC 100% LI	
KB72-2	Bottom Entry, Right	
A366-2	Engine Governor - Electronic, Isochronous	
A422-2	Engine Statter - 12 Volt DC Motor	
D041-2	Engine Air Cleaner - Normal Duty	
A333-2	Battery Charging Alternator	
H389-2	Shutdown - I ow Coolant Level	
E089-2	Extension - Coolant Drain	
E125-2	Engine Cooling - Radiator, High Ambient Air Temperature, Ship Fitted	
H669-2	Engine Coolant - 50% Antifreeze, 50% Water Mixture	
E153-2	Coolant Heater	
H706-2	Engine Oil	
L028-2	Genset Warranty - 2 Years Base	
L050-2	Literature - English	
A322-2	Packing - Skid, Poly Bag	
F065-2	Battery Rack	
H268-2	Extension - Oil Drain	
L260-2	Green Sound Level 2 Intake Baffle - Ship Loose	
L262-2	Ship Loose - Vent Kit B	
A048G602	10A Battery Charger	1
A054X752	Battery Heater Kit	1
ACC-BAT-34	Batteries	2

Section 2 – Generator Spec Sheets

Specification sheet

Diesel generator set

QSB7 series engine 125-200 kW @ 60 Hz EPA Tier 3 emissions

Description

Cummins[®] generator sets are fully integrated power generation systems providing optimum performance, reliability and versatility for stationary Standby applications.

Features

Heavy duty engine - Rugged 4-cycle industrial diesel delivers reliable power and fast response to load changes.

Alternator - Several alternator sizes offer selectable motor starting capability with low reactance 2/3 pitch windings, low waveform distortion with non-linear loads and fault clearing short-circuit capability.

Control system - The PowerCommand[®] 1.1 electronic control is standard equipment and provides total generator set system integration including automatic remote starting/stopping, precise frequency and voltage regulation, alarm and status message display, output metering, auto-shutdown at fault detection and NFPA 110 Level 1 compliance. **Cooling system** - Standard cooling package provides reliable running at up to 50 $^{\circ}$ C (122 $^{\circ}$ F) ambient temperature.

Enclosures - The aesthetically appealing enclosure incorporates special designs that deliver one of the quietest generators of its kind. Aluminium material plus durable powder coat paint provides the best anti-corrosion performance. The generator set enclosure has been evaluated to withstand 180 MPH wind loads in accordance with ASCE7 -10. The design has hinged doors to provide easy access for service and maintenance.

Fuel tanks - Dual wall sub-base fuel tanks are offered as optional features, providing economical and flexible solutions to meet extensive code requirements on diesel fuel tanks.

NFPA - The generator set accepts full rated load in a single step in accordance with NFPA 110 for Level 1 systems.

Warranty and service - Backed by a comprehensive warranty and worldwide distributor network.

	Standby 60 Hz		Prime 60 Hz		
Model	kW	kVA	kW	kVA	Data sheets
C125D6D	125	156	113	141	NAD-6371-EN
C150D6D	150	188	135	169	NAD-6372-EN
C175D6D	175	219	158	197	NAD-6373-EN
C200D6D	200	250	180	225	NAD-6374-EN

Generator set specifications

Governor regulation class	ISO8528 Part 1 Class G3
Voltage regulation, no load to full load	± 1.0%
Random voltage variation	± 1.0%
Frequency regulation	Isochronous
Random frequency variation	± 0.50%
Radio frequency emissions compliance	FCC code title 47 part 15 class A and B

Engine specifications

Design	Turbocharged and charge air cooled
Bore	107 mm (4.21 in.)
Stroke	124 mm (4.88 in.)
Displacement	6.7 L (408 in ³)
Cylinder block	Cast iron, in-line 6 cylinder
Battery capacity	2 x 850 amps per battery at ambient temperature of 0 $^{\circ}\mathrm{C}$ (32 $^{\circ}\mathrm{F})$
Battery charging alternator	100 amps
Starting voltage	2 x 12 volt in parallel, negative ground
Lube oil filter type(s)	Spin-on with relief valve
Standard cooling system	High ambient radiator
Rated speed	1800 rpm

Alternator specifications

Design	Brushless, 4 pole, drip proof, revolving field
Stator	2/3 pitch
Rotor	Direct coupled, flexible disc
Insulation system	Class H per NEMA MG1-1.65
Standard temperature rise	120 °C (248 °F) Standby
Exciter type	Torque match (shunt) with PMG as option
Alternator cooling	Direct drive centrifugal blower
AC waveform Total Harmonic Distortion (THDV)	< 5% no load to full linear load, < 3% for any single harmonic
Telephone Influence Factor (TIF)	< 50 per NEMA MG1-22.43
Telephone Harmonic Factor (THF)	< 3%

Available voltages

1-phase	3-phase				
• 120/240	• 120/208	• 120/240	• 277/480	• 347/600	• 127/220

Generator set options

Fuel system

- Basic fuel tanks
- Regional fuel tanks
- Engine
- Engine air cleaner normal or heavy duty
- Shut down low oil pressure
- Extension oil drain
- Engine oil heater

Alternator

- 120 °C temperature rise alternator
- 105 °C temperature rise alternator
- PMG excitation
- Alternator heater, 120 V
- Reconnectable full 1 phase output alternator upto 175 kWe

Control

- AC output analog meters
- Stop switch emergency
- Auxiliary output relays (2)
- Auxiliary configurable signal inputs (8) and relay outputs (8)

Electrical

- One, two or three circuit breaker configurations
- 80% rated circuit breakers
- 80% or 100% rated LSI circuit breakers
- Battery charger

Enclosure

- Aluminium enclosure Sound Level 1 or Level 2, green color
- Aluminium weather protective enclosure with muffler installed, green color

Cooling system

- Shutdown low coolant level
- Warning low coolant level
- Extension coolant drain
- Coolant heater options:
- <4 ℃ (40 ℃) cold weather - <-18 ℃ (0 ℃) – extreme cold

Exhaust system

- Exhaust connector NPT
- Exhaust muffler mounted

Generator set application

- Base barrier elevated genset
- Radiator outlet duct adapter

Warranty

- Base warranty 2 year/1000 hours, Standby
- Base warranty 1 year/unlimited hours, Prime
- 3 & 5 year Standby warranty options

power.cummins.com

Our energy working for you.™ ©2019 Cummins Inc. | NAS-6370-EN.DOCX (04/19) A061F585

Generator set accessories

- Coolant heater
- Battery heater kit
- Engine oil heater
- Remote control displays
- Auxiliary output relays (2)
- Auxiliary configurable signal inputs (8) and relay outputs (8)
- Annunciator RS485
- Audible alarm

- Remote monitoring device PowerCommand 500/550
- Battery charger stand-alone, 12 V
- Circuit breakers
- Enclosure Sound Level 1 to Sound Level 2 upgrade kit
- Base barrier elevated generator set
- Mufflers industrial, residential or critical
- Alternator PMG excitation
- Alternator heater
- Improved PC1.1 display readability
- Top conduit entry access

Control system PowerCommand 1.1

PowerCommand control is an integrated generator set control system providing voltage regulation, engine protection, operator interface and isochronous governing (optional). Major features include:

- Battery monitoring and testing features and smart starting control system.
- Standard PCCNet interface to devices such as remote annunciator for NFPA 110 applications.
- Control boards potted for environmental protection.
- Control suitable for operation in ambient temperatures from -40 °C to +70 °C (-40 °F to +158 °F) and altitudes to 5000 meters (13,000 feet).
- Prototype tested; UL, CSA, and CE compliant.
- InPower™ PC-based service tool available for detailed diagnostics.

Operator/display panel

- Manual off switch
- Alpha-numeric display with pushbutton access for viewing engine and alternator data and providing setup, controls and adjustments (English or international symbols)
- LED lamps indicating generator set running, not in auto, common warning, common shutdown, manual run mode and remote start
- Suitable for operation in ambient temperatures from -40 $\,^{\circ}\!C$ to +70 $\,^{\circ}\!C$
- Bargraph display (optional)

AC protection

- Over current warning and shutdown
- Over and under voltage shutdown
- Over and under frequency shutdown
- Over excitation (loss of sensing) fault
- Field overload

Engine protection

- Overspeed shutdown
- · Low oil pressure warning and shutdown
- · High coolant temperature warning and shutdown

- · Low coolant level warning or shutdown
- Low coolant temperature warning
- · High, low and weak battery voltage warning
- Fail to start (overcrank) shutdown
- · Fail to crank shutdown
- Redundant start disconnect
- Cranking lockout
- Sensor failure indication
- Low fuel level warning or shutdown

Alternator data

- Line-to-Line and Line-to-neutral AC volts
- 3-phase AC current
- Frequency
- Total kVa

Engine data

- DC voltage
- Lube oil pressure
- Coolant temperature
- Engine speed

Other data

- Generator set model data
- Start attempts, starts, running hours
- Fault history
- RS485 Modbus® interface
- Data logging and fault simulation (requires InPower service tool)

Digital governing (optional)

- Integrated digital electronic isochronous governor
- Temperature dynamic governing

Digital voltage regulation

- Integrated digital electronic voltage regulator
- 2-phase Line-to-Line sensing
- Configurable torque matching

Control functions

- Time delay start and cooldown
- Cycle cranking
- PCCNet interface
- (2) Configurable inputs
- (2) Configurable outputs
- Remote emergency stop
- Automatic Transfer Switch (ATS) control
- Generator set exercise, field adjustable

Our energy working for you.™

Options

- Auxiliary output relays (2)
- Remote annunciator with (3) configurable inputs and (4) configurable outputs
- PMG alternator excitation
- PowerCommand 500/550 for remote monitoring and alarm notification (accessory)
- Auxiliary, configurable signal inputs (8) and configurable relay outputs (8)

Ratings definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN 6271 and BS 5514.

- AC output analog meters (bargraph)
 - Color-coded graphical display of:
 - 3-phase AC voltage
 - 3-phase current
 - Frequency
 - kVa
- Remote operator panel
- PowerCommand 2.3 control with AmpSentry protection

This outline drawing is for reference only. See respective model data sheet for specific model outline drawing number.

Dim "A"-

Do not use for installation design

Model	Dim "A" mm (in.)	Dim "B" mm (in.)	Dim "C" mm (in.)	Set weight*wet kg (lbs.)			
	Open set						
C125D6D	2867 (113)	1016 (40)	1415 (56)	1470 (3240)			
C150D6D	2867 (113)	1016 (40)	1415 (56)	1470 (3240)			
C175D6D	2867 (113)	1016 (40)	1415 (56)	1470 (3240)			
C200D6D	2867 (113)	1016 (40)	1415 (56)	1470 (3240)			
	We	eather protective enclos	sure				
C125D6D	2867 (113)	1016 (40)	1836 (72)	1600 (3527)			
C150D6D	2867 (113)	1016 (40)	1836 (72)	1600 (3527)			
C175D6D	2867 (113)	1016 (40)	1836 (72)	1600 (3527)			
C200D6D	2867 (113)	1016 (40)	1836 (72)	1600 (3527)			
	Sound	attenuated enclosure	Level 1				
C125D6D	3621 (143)	1016 (40)	1836 (72)	1649 (3635)			
C150D6D	3621 (143)	1016 (40)	1836 (72)	1649 (3635)			
C175D6D	3621 (143)	1016 (40)	1836 (72)	1649 (3635)			
C200D6D	3621 (143)	1016 (40)	1836 (72)	1649 (3635)			
Sound attenuated enclosure Level 2							
C125D6D	4061 (160)	1016 (40)	1836 (72)	1665 (3671)			
C150D6D	4061 (160)	1016 (40)	1836 (72)	1665 (3671)			
C175D6D	4061 (160)	1016 (40)	1836 (72)	1665 (3671)			
C200D6D	4061 (160)	1016 (40)	1836 (72)	1665 (3671)			

 * Weights above are average. Actual weight varies with product configuration.

Codes and standards

Codes or standards compliance may not be available with all model configurations - consult factory for availability.

	All low voltage models are CSA certified to product class 4215-01.	International Building Code	The generator set is certified to International Building Code (IBC) 2012.
P	The Prototype Test Support (PTS) program verifies the performance integrity of the generator set design. Cummins products bearing the PTS symbol meet the prototype test requirements of NFPA 110 for Level 1 systems.	U.S. EPA	Engine certified to U.S. EPA SI Stationary Emission Regulation 40 CFR, Part 60.
Acontras To ISO 9001	This generator set is designed in facilities certified to ISO 9001 and manufactured in facilities certified to ISO 9001 or ISO 9002.		The generator set is available Listed to UL 2200, Stationary Engine Generator Assemblies.

Warning: Back feed to a utility system can cause electrocution and/or property damage. Do not connect to any building's electrical system except through an approved device or after building main switch is open.

For more information contact your local Cummins distributor or visit power.cummins.com

Our energy working for you.™

©2019 Cummins Inc. All rights reserved. Cummins is a registered trademark of Cummins Inc. PowerCommand, AmpSentry, InPower and "Our energy working for you." are trademarks of Cummins Inc. Other company, product, or service names may be trademarks or service marks of others. Specifications are subject to change without notice. NAS-6370-EN.DOCX (04/19) A061F585

Generator set data sheet

Model:	C125D6D
Frequency:	60 Hz
Fuel type:	Diesel
KW rating:	125 standby
	112.5 prime
Emissions level:	EPA Tier 3, Stationary emergency

Exhaust emission data sheet:	EDS-3043	
Exhaust emission compliance sheet:	EPA-2032	
Sound performance data sheet:	MSP-4007	
Cooling performance data sheet:	MCP-2047	
Prototype test summary data sheet:	PTS-636	

	Standby	Standby				Prime			
Fuel consumption	kW (kVA)				kW (kVA)				
Ratings	125 (156)				112.5 (141)				
Load	1/4	1/2	3/4	Full	1/4	1/2	3/4	Full	
US gph	4.2	6.1	7.9	10.1	3.9	5.6	7.3	9.3	
L/hr	15.89	23.08	29.90	38.23	14.76	21.20	27.63	35.20	

Engine	Standby	Prime		
Engine manufacturer	Cummins Inc.	. a		
Engine model	QSB7-G5			
Configuration	Cast iron, in-line, 6 cylir	Iders		
Aspiration	Turbocharged and char	Turbocharged and charge air cooled		
Gross engine power output, kWm (bhp)	242 (324)	208 (279)		
BMEP at set rated load, kPa (psi)	1493 (216)	1358 (197)		
Bore, mm (in)	107 (4.21)			
Stroke, mm (in)	124 (4.88)			
Rated speed, rpm	1800			
Piston speed, m/s (ft/min)	7.44 (1464)			
Compression ratio	17.2:1	17.2:1		
Lube oil capacity, L (qt)	17.4 (18.38)			
Overspeed limit, rpm	2250			

Fuel flow

Maximum fuel flow, L/hr (US gph)	103 (27.0)
Maximum fuel inlet restriction with clean filter, mm Hg (in Hg)	127 (5.0)

Air	Standby rating	Prime rating
Combustion air, m3/min (scfm)	13.9 (491)	13.53 (478)
Maximum air cleaner restriction with clean filter, kPa (in H2O)	3.7 (15)	

Exhaust

Exhaust flow at set rated load, m ³ /min (cfm)	33.01 (1166)	32.22 (1138)
Exhaust temperature, °C (°F)	447.22 (837)	439.44 (823)
Maximum back pressure, kPa (in H ₂ O)	10 (40.19)	10 (40.19)
Actual exhaust back pressure with CPG sound level 2 enclosure muffler, kPa (in H_2O)	8.7 (34.96)	7.83 (31.47)
Actual exhaust back pressure with CPG weather enclosure muffler, kPa (in H_2O)	6.5 (26.12)	5.85 (23.51)

Standard set-mounted radiator cooling

Ambient design, ° C (° F)	50 (122)	
Fan Ioad, kWm (HP)	14.02 (18.8)	
Coolant capacity (with radiator), L (US Gal)	22 (5.9)	
Cooling system air flow, m ³ /min (scfm)	305.82 (10800)	
Total heat rejection, MJ/min (Btu/min)	6.95 (6584)	6.4 (6066)
Maximum cooling air flow static restriction, kPa (in H ₂ O)	0.12 (0.5)	

Weight²

Unit wet weight kas (lbs)	1340 (2955)
	1040 (2000)

Notes:

¹ For non-standard remote installations contact your local Cummins Power Generation representative.

²Weights represent a set with standard features. See outline drawing for weights of other configurations.

Derating factors

Standby	Engine power available up to 3850 m (12633 ft.) at ambient temperatures up to 40°C (104°F) and 2695 m (8842 ft.) at 50°C (122°F). Consult your Cummins distributor for temperature and ambient requirements outside these parameters.
Prime	Engine power available up to 3136 m (10290 ft.) at ambient temperatures up to 40°C (104°F) and 2466 m (8090 ft.) at 50°C (122°F). Consult your Cummins distributor for temperature and ambient requirements outside these parameters.

Ratings definitions

Emergency standby power (ESP):	Limited-time running power (LTP):	Prime power (PRP):	Base load (continuous) power (COP):
Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power to a constant electrical load for limited hours. Limited Time Running Power (LTP) is in accordance with ISO 8528.	Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) is in accordance with ISO 8528, ISO 3046, AS 2789, DIN 6271 and BS 5514.

North America

1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 763 574 5000

Fax 763 574 5298

Our energy working for you."

©2019 Cummins Inc. All rights reserved. Cummins is a registered trademarks of Cummins Inc. PowerCommand, AmpSentry, InPower and "Our energy working for you." are trademarks of Cummins. Other company, product, or service names may be trademarks or service marks of others. Specifications are subject to change without notice. NAD-6371-EN (03/19) A061F586

Alternator data

Standard Alternators	Single phase ²			Three P	hase ¹		
Maximum temperature rise above 40 °C ambient	125 ℃			125	5 ℃		
Feature code	BB88-2	B946-2	B986-2	B952-2	B943-2	BB86-2	BB88-2
Alternator data sheet number	ADS-211	ADS-208	ADS-208	ADS-209	ADS-208	ADS-208	ADS-211
Voltage ranges	120/240	120/208	120/240	347/600	277/480	127/220	120/208, 127/220, 277/480
Voltage feature code	R104	R098-2	R106-2	R114-2	R002-2	R020-2	R098, R020, R106, R002
Surge kW	201.6	208.4	210	211.4	210	209.1	213.4
Motor starting kVA (at 90% sustained voltage) Shunt	672	422	422	516	422	422	672
Motor starting kVA (at 90% sustained voltage) PMG	791	497	497	607	497	497	791
Full load current amps at standby rating	521	434	376	150	188	410	188 to 434

Alternator data

Standard Alternators	Single phase ²			Three	phase ¹		
Maximum temperature rise above 40 °C ambient	105 ℃	105 ℃	105 ℃	105 ℃	105 ℃	105 ℃	105 ℃
Feature code	BB87-2	BB94-2	BB94-2	BB95-2	BB92-2	BB85-2	BB87-2
Alternator data sheet number	ADS-211	ADS-209	ADS-209	ADS-209	ADS-209	ADS-209	ADS-211
Voltage ranges	120/240	120/208	120/240	277/480	347/600	127/220	120/208, 127/220, 277/480
Voltage feature code	R104-2	R098-2	R106-2	R002-2	R114-2	R020-2	R098, R020, R106, R002
Surge kW	201.6	208.4	210	211.4	210	209.1	213.4
Motor starting kVA (at 90% sustained voltage) Shunt	672	516	516	516	516	516	672
Motor starting kVA (at 90% sustained voltage) PMG	791	607	607	607	607	607	791
Full load current amps at standby rating	521	434	376	188	150	410	188 to 434

Notes:

¹ Single phase power can be taken from a three phase generator set at up to 2/3 set rated 3-phase kW at 1.0 power factor

² Full single phase output up to full set rated 3-phase kW at 1.0 power factor

Formulas for calculating full load currents:

Three phase output

Single phase output

kW x 1000 Voltage x 1.73 x 0.8

kW x SinglePhaseFactor x 1000

Voltage

Warning: Back feed to a utility system can cause electrocution and/or property damage. Do not connect to any building's electrical system except through an approved device or after building main switch is open.

North America 1400 73rd Avenue N.E. Minneapolis, MN 55432 USA Phone 763 574 5000

Fax 763 574 5298

Our energy working for you."

©2019 Cummins Inc. All rights reserved. Cummins is a registered trademarks of Cummins Inc. PowerCommand, AmpSentry, InPower and "Our energy working for you." are trademarks of Cummins. Other company, product, or service names may be trademarks or service marks of others. Specifications are subject to change without notice. NAD-6371-EN (03/19) A061F586

PowerCommand[®] 1.1 Control System

Description

The PowerCommand control system is a microprocessor-based generator set monitoring, metering and control system designed to meet the demands of today's engine driven generator sets. The integration of all control functions into a single control system provides enhanced reliability and performance compared to conventional generator set control systems. These control systems have been designed and tested to meet the harsh environment in which gensets are typically applied.

Features

Easy to view: HMI 211RS for residential use. 128 x 64 pixel graphic LED backlight LCD.

Easy to use: Tactile buttons for generator set start/stop. Residential Standby display for convenient use.

Modbus® interface: Eliminates need for MODLON.

Progressive protective functions: Advanced Overcurrent Protection – Generator set monitoring & protection.

Digital voltage regulation: Single phase full wave SCR type regulator compatible with either shunt or PMSG systems.

Digital engine speed governing: Provides isochronous frequency regulation.

12 and 24 VDC battery operation.

Automatic mains failure: Smooth & automatic transfer and re-transfer of load from utility to generator set & vice-versa.

Exerciser clock: Runs generator set exerciser routines for dependability of operation.

Warranty and service: Backed by a comprehensive warranty and worldwide distributor service network.

Certification: Suitable for us on generator sets that are designed, manufactured, tested and certified to relevant UL, NFPA, ISO, IEC Mil Std., CE, UKCA and CSA standards.

PowerCommand Digital Generator Set Control PCC 1302

Description

The PowerCommand generator set control is suitable for use on a wide range of generator sets in nonparalleling applications. The PowerCommand control is compatible with shunt or PMG excitation style. It is suitable for use with reconnectable or nonreconnectable generators, and it can be configured for any frequency, voltage and power connection from 120-600 VAC Line-to-Line.

Power for this control system is derived from the generator set starting batteries. The control functions over a voltage range from 8 VDC to 30 VDC.

Features

- 12 and 24 VDC battery operation.
- Digital voltage regulation.
- Digital engine speed governing (where applicable) Provides isochronous frequency regulation.
- Full authority engine communications (where applicable) Provides communication and control with the Engine Control Module (ECM).
- Common harnessing with higher feature Cummins controls allows for easy field upgrades.
- Generator set monitoring Monitors status of all critical engine and alternator functions.
- Digital genset metering (AC and DC).
- Genset battery monitoring system to sense and warn against a weak battery condition.
- Engine starting Includes relay drivers for starter, fuel shut off (FSO), glow plug/spark ignition power and switch B+ applications.
- Generator set protection Protects engine and alternator.
- Advanced serviceability using InPower™, a PCbased software service tool.
- Environmental protection The control system is designed for reliable operation in harsh environments. The main control board is a fully encapsulated module that is protected from the elements.
- Exerciser function Routine exercising of generator set.
- Supports dual fuel control.
- Automatic Mains Failure function built in generator set controller. Modbus interface - for interconnecting to customer equipment.

- Configurable inputs and outputs Four discrete inputs and two dry contact relay outputs.
- Warranty and service Backed by a comprehensive warranty and worldwide distributor service network.
- Certifications Suitable for use on generator sets that are designed, manufactured, tested and certified to relevant UL, NFPA, ISO, IEC, Mil Std., CE, UKCA and CSA standards.

Base Control Functions

HMI capability

<u>Operator adjustments</u> - The HMI includes provisions for many set up and adjustment functions.

<u>Generator set hardware data</u> - Access to the control and software part number, generator set rating in kVA and generator set model number is provided from the HMI or InPowerTM.

Data logs - Includes engine run time, controller on time, number of start attempts.

<u>Fault history</u> - Provides a record of the most recent fault conditions with control hours time stamp. Up to 10 events are stored in the control non-volatile memory.

Alternator data

- Voltage (single or three phase Line-to-Line and Line-to-Neutral)
- Current (single or three phase)
- kVA (three phase and total)
- Frequency
- Engine data
- Starting battery voltage
- Engine speed
- Engine temperature
- Engine oil pressure
- Partial Full Authority Engine (FAE) data (where applicable)
- <u>Service adjustments</u> The HMI includes provisions for adjustment and calibration of generator set control functions. Adjustments are protected by a password. Functions include:
- Engine speed governor adjustments
- Voltage regulation adjustments
- Cycle cranking
- Configurable fault set up
- Configurable output set up
- Meter calibration
- Units of measurement

Engine control

<u>SAE-J1939 CAN interface to full authority ECMs</u> (where applicable) - Provides data swapping between genset and engine controller for control, metering and diagnostics.

<u>12 VDC/24 VDC battery operations</u> - PowerCommand will operate either on 12 VDC or 24 VDC batteries.

<u>Isochronous governing</u> (where applicable) - Capable of controlling engine speed within +/-0.25% for any steady state load from no load to full load. Frequency drift will not exceed +/-0.5% for a 33 °C (60 °F) change in ambient temperature over an 8 hour period.

<u>Temperature dependent governing dynamics</u> (with electronic governing) - Modifies the engine governing control parameters as a function of engine temperature. This allows the engine to be more responsive when warm and more stable when operating at lower temperature levels.

<u>Remote start mode</u> - Accepts a ground signal from remote devices to automatically start the generator set and immediately accelerate to rated speed and voltage. The remote start signal will also wake up the control from sleep mode. The control can incorporate a time delay start and stop.

<u>Remote and local Emergency stop</u> - The control accepts a ground signal from a local (genset mounted) or remote (facility mounted) Emergency stop switch to cause the generator set to immediately shut down. The generator set is prevented from running or cranking with the switch engaged. If in sleep mode, activation of either Emergency stop switch will wake up the control.

<u>Sleep mode</u> - The control includes a configurable low current draw state to minimize starting battery current draw when the genset is not operating. The control can also be configured to go into a low current state while in auto for Prime applications or applications without a battery charger.

<u>Engine starting</u> - The control system supports automatic engine starting. Primary and backup start disconnects are achieved by one of three methods: magnetic pickup, battery charging alternator feedback or main alternator output frequency. The control also supports configurable glow plug control when applicable.

<u>Cycle cranking</u> - Configurable for the number of starting cycles (1 to 7) and duration of crank and rest periods. Control includes starter protection algorithms to prevent the operator from specifying a starting sequence that might be damaging.

<u>Time delay start and stop (cooldown)</u> - Configurable for time delay of 0-300 seconds prior to starting after receiving a remote start signal and for time delay of 0-600 seconds prior to shut down after signal to stop in normal operation modes. Default for both time delay periods is 0 seconds.

Alternator control

The control includes an integrated line-to-line sensing voltage regulation system that is compatible with shunt or PMG excitation systems. The voltage regulation system is full wave rectified and has an SCR output for good motor starting capability. Major system features include:

Digital output voltage regulation - Capable of regulating output voltage to within +/-1.0% for any loads between no load and full load. Voltage drift will not exceed +/-1.5% for a 40 °C (104 °F) change in temperature in an eight hour period. On engine starting or sudden load acceptance, voltage is controlled to a maximum of 5% overshoot over nominal level.

The automatic voltage regulator feature can be disabled to allow the use of an external voltage regulator.

<u>Torque-matched V/Hz overload control</u> - The voltage roll-off set point and rate of decay (i.e. the slope of the V/Hz curve) is adjustable in the control.

Protective Functions

On operation of a protective function the control will indicate a fault by illuminating the appropriate status LED on the HMI, as well as display the fault code and fault description on the LCD. The nature of the fault and time of occurrence are logged in the control. The service manual and InPower service tool provide service keys and procedures based on the service codes provided. Protective functions include:

Battle short mode

When enabled and the battle short switch is active, the control will allow some shutdown faults to be bypassed. If a bypassed shutdown fault occurs, the fault code and description will still be annunciated, but the genset will not shutdown. This will be followed by a fail to shutdown fault. Emergency stop shutdowns and others that are critical for proper operation are not bypassed. Please refer to the Control Application Guide or Manual for list of these faults.

Configurable alarm and status inputs

The control accepts up to four alarm or status inputs (configurable contact closed to ground or open) to indicate a configurable (customer-specified) condition. The control is programmable for warning, shutdown or status indication and for labelling the input.

Emergency stop

Annunciated whenever either Emergency stop signal is received from external switch.

General engine protection

Low and high battery voltage warning - Indicates status of battery charging system (failure) by continuously monitoring battery voltage.

<u>Weak battery warning</u> - The control system will test the battery each time the generator set is signaled to start and indicate a warning if the battery indicates impending failure.

Fail to start (overcrank) shutdown - The control system will indicate a fault if the generator set fails to start by the completion of the engine crack sequence.

<u>Fail to crank shutdown</u> - Control has signaled starter to crank engine but engine does not rotate.

<u>Cranking lockout</u> - The control will not allow the starter to attempt to engage or to crank the engine when the engine is rotating.

Hydro mechanical fuel system engine protection

<u>Overspeed shutdown</u> - Default setting is 115% of nominal. Low lube oil pressure warning/shutdown - Level is pre-set (configurable with InPower) to match the capabilities of the engine used. Control includes time delays to prevent nuisance alarms.

<u>High lube oil temperature warning/shutdown</u> - Level is preset (configurable with InPower) to match the capabilities of the engine used. Control includes time delays to prevent nuisance alarms.

<u>High engine temperature warning/shutdown</u> - Level is preset (configurable with InPower) to match the capabilities of the engine used. Control includes time delays to prevent nuisance alarms.

Low coolant temperature warning - Indicates that engine temperature may not be high enough for a 10 second start or proper load acceptance.

<u>Sensor failure indication</u> - Logic is provided on the base control to detect analog sensor or interconnecting wiring failures.

Full authority electronic engine protection

Engine fault detection is handled inside the engine ECM. Fault information is communicated via the SAE-J1939 data link for annunciation in the HMI

Alternator protection

<u>High AC voltage shutdown (59)</u> - Output voltage on any phase exceeds pre-set values. Time to trip is inversely proportional to amount above threshold. Values adjustable from 105-130% of nominal voltage, with time delay adjustable from 0.1-10 seconds. Default value is 110% for 10 seconds.

Low AC voltage shutdown (27) - Voltage on any phase has dropped below a pre-set value. Adjustable over a range of 50-95% of reference voltage, time delay 2-20 seconds. Default value is 85% for 10 seconds.

Overcurrent warning/shutdown - Implementation of the thermal damage curve with instantaneous trip level calculated based on current transformer ratio and application power rating.

<u>Under frequency shutdown (81 u)</u> - Generator set output frequency cannot be maintained. Settings are adjustable from 2-10 Hz below nominal governor set point, for a 5-20 second time delay. Default: 6 Hz, 10 seconds.

<u>Over frequency shutdown/warning (810)</u> - Generator set is operating at a potentially damaging frequency level. Settings are adjustable from 2-10 Hz above nominal governor set point for a 1-20 second time delay. Default: 6 Hz, 10 seconds, enabled.

Loss of sensing voltage shutdown - Shutdown of generator set will occur on loss of voltage sensing inputs to the control.

<u>Field overload shutdown</u> - Uses field voltage to shutdown generator set when a field overload condition occurs.

Advanced Functions

Automatic mains failure*

The built in AMF feature provides the automatic transfer and re-transfer of the load from utility to generator set and vice-versa.

- Automatically starts-stops the generator set in the event of utility failure.
- Annunciates faults.

* A utility voltage monitoring sensor (as shown in the AMF diagram above) must be connected in order to use the AMF feature on the 1302 control. Use Schneider Electric Relay RSB1A120U7 and Socket RSZE1S35M.

Exerciser clock

The exerciser clock runs the generator set exerciser routines for dependability of operation.

Field Control Interface

Input signals to the base control include:

- Remote start
- Local and Emergency stop
- Configurable inputs: Control includes (4) input signals from customer discrete devices that are configurable for warning, shutdown or status indication, as well as message displayed.

Output signals from the PowerCommand control include:

- Configurable relay outputs: Control includes (2) relay output contacts rated at 2 A. These outputs can be configured to activate on any control warning or shutdown fault as well as ready to load, not in auto, common alarm, common warning and common shutdown.
- Ready to load (generator set running) signal: Operates when the generator set has reached 90% of rated speed and voltage and latches until generator set is switched to off or idle mode.

PowerCommand Human Machine Interface HMI211

Description

This control system includes an intuitive operator interface panel that allows for complete genset control as well as system metering, fault annunciation, configuration and diagnostics. The interface includes five generator set status LED lamps with both internationally accepted symbols and English text to comply with customer needs. The interface also includes an LED backlit LCD display with tactile feel soft-switches for easy operation and screen navigation. It is configurable for units of measurement and has adjustable screen contrast and brightness.

The *run/off/auto* switch function is integrated into the interface panel.

All data on the control can be viewed by scrolling through screens with the navigation keys. The control displays the current active fault and a time-ordered history of the five previous faults.

Features

- LED indicating lamps:
 - Remote start
- Not in auto
- Shutdown
- Warning
- Auto
- Run
- 128 x 64 pixels graphic LED backlight LCD.
- Four tactile feel membrane switches for LCD defined operation. The functions of these switches are defined dynamically on the LCD.
- Two tactile feel membrane switches dedicated for off and back.
- Allows for complete genset control setup.
- Certifications: Suitable for use on generator sets that are designed, manufactured, tested and certified to relevant UL, NFPA, ISO, IEC, Mil Std., CE, UKCA and CSA standards.
- HMI 211RS provides convenience for residential use.

Communications Connections

PC tool interface - This RS-485 communication port allows the HMI to communicate with a personal computer running InPower.

This RS-485 communication port allows the HMI to communicate with the main control board.

Mechanical Drawing

Dimensions: mm (inches)

Software

InPower (beyond 6.0 version) is a PC-based software service tool that is designed to directly communicate to PowerCommand generator sets and transfer switches, to facilitate service and monitoring of these products.

Environment

The control is designed for proper operation without recalibration in ambient temperatures from -40 $^{\circ}$ C (-40 $^{\circ}$ F) to +70 $^{\circ}$ C (158 $^{\circ}$ F), and for storage from -55 $^{\circ}$ C (-67 $^{\circ}$ F) to +80 $^{\circ}$ C (176 $^{\circ}$ F). Control will operate with humidity up to 95%, non-condensing.

The HMI is designed for proper operation in ambient temperatures from -40 °C* (-40 °F) to +70 °C (158 °F), and for storage from -40 °C* (-40 °F) to +80 °C (176 °F).

The control board is fully encapsulated to provide superior resistance to dust and moisture. Display panel has a single membrane surface, which is impervious to effects of dust, moisture, oil and exhaust fumes. This panel uses a sealed membrane to provide long reliable service life in harsh environments.

The control system is specifically designed and tested for resistance to RFI/EMI and to resist effects of vibration to provide a long reliable life when mounted on a generator set. The control includes transient voltage surge suppression to provide compliance to referenced standards.

* Heater accessory (pn: A040H853) is available for enhanced operation below -20 °C

Certifications

PowerCommand meets or exceeds the requirements of the following codes and standards:

- NFPA 110 for level 1 and 2 systems.
- ISO 8528-4: 1993 compliance, controls and switchgear.
- CE and UKCA marking: The control system is suitable for use on generator sets to be CE and UKCA-marked.
- EN 50081-1,2 residential/light industrial emissions or industrial emissions.
- EN 50082-1,2 residential/light industrial or industrial susceptibility.
- ISO 7637-2, level 2; DC supply surge voltage test.
- Mil Std. 202C, Method 101 and ASTM B117: Salt fog test.
 PowerCommand control systems and generator sets are
- designed and manufactured in ISO 9001 certified facilities.
 UL 6200 recognized and suitable for use on UL 2200 Listed generator sets.
- ČSA C282-M1999 compliance.
- CSA 22.2 No. 14 M91 industrial controls.

Warranty

All components and subsystems are covered by an express limited one year warranty. Other optional and extended factory warranties and local distributor maintenance agreements are available

Accessories

1301-1302 Upgrade Kit (HM)	0541-1431
PowerCommand 500 (LAN)	A040X126
Remote HMI 211	0541-1394
Remote HMI 211RS	A046K103
I/O Expansion (Aux 101)	0541-1291
HMI Heater Accessory Kit	A040H853

Parts Ordering Information

1302 Control Board	0327-1617-02
1302 control Board – Arrow	A043W505
Aux 104 (Governor Control)	0327-1507
HMI 211 Without Heater	0300-6014
HMI 211 with Heater	A026G237

Additional Resources

Resource	Where to find
1302 Service Manual	QSOL
Accessories Catalog	cumminspower.com
Additional Controls Information	PowerSuite Library

For more information contact your local Cummins distributor or visit power.cummins.com

Our energy working for you.™

©2019 Cummins Inc. All rights reserved. Cummins is a registered trademark of Cummins Inc. PowerCommand, AmpSentry, InPower and "Our energy working for you." are trademarks of Cummins Inc. Other company, product, or service names may be trademarks or service marks of others. Specifications are subject to change without notice. PDS-1566 | PD0000147 | (01/22)

2023 EPA Tier 3 Exhaust Emission Compliance Statement C125D6D

Stationary Emergency

60 Hz Diesel Generator Set

Compliance Information:

The engine used in this generator set complies with Tier 3 emissions limit of U.S. EPA New Source Performance Standards for stationary emergency engines under the provisions of 40 CFR 60 Subpart IIII.

Engine Manufacturer:	Cummins Inc.
EPA Certificate Number:	PCEXL0409AAD-026
Effective Date:	05/24/2022
Date Issued:	05/24/2022
EPA Engine Family (Cummins Emissions Family):	PCEXL0409AAD

Engine Information:

Model:	QSB7-G5 NR3	Bore:	4.21 in. (106.9 mm)
Engine Nameplate HP:	324	Stroke:	4.88 in. (124 mm)
Туре:	4 Cycle, In-line, 6 Cylinder Diesel	Displacement:	408 cu. in. (7 liters)
Aspiration:	Turbocharged and Charge Air Cooled	Compression ratio:	17.2:1
Emission Control Device:		Exhaust stack diameter:	4 in. (101.6)

Diesel Fuel Emission Limits

D2 Cycle Exhaust Emissions	G	ram	s per BH	IP-hr	Grams per kWm-hr			
	NOx NMH	± <u>c</u>	<u>co</u>	<u>PM</u>	<u>NOx +</u> <u>NMHC</u>	<u>CO</u>	<u>PM</u>	
EPA Emissions Limit	3.0		2.6	0.15	4.0	3.5	0.20	

Test methods: EPA emissions recorded per 40 CFR Part 60, 89, 1039, 1065 and weighted at load points prescribed in the regulations for constant speed engines.

Diesel fuel specifications: Cetane number: 40-50, Reference: ASTM D975 No. 2-D, 300-500 ppm Sulphur

Reference conditions: Air Inlet Temperature: 25 °C (77 °F), Fuel Inlet Temperature: 40 °C (104 °F). Barometric Pressure: 100 kPa (29.53 in Hg), Humidity: 10.7 g/kg (75 grains H2O/lb) of dry air; required for NOx correction, Restrictions: Intake Restriction set to a maximum allowable limit for clean filter; Exhaust Back Pressure set to a maximum allowable limit.

Tests conducted using alternate test methods, instrumentation, fuel or reference conditions can yield different results. Engine operation with excessive air intake or exhaust restriction beyond published maximum limits, or with improper maintenance, may result in elevated emission levels.

High Ambient Air Temperature Radiator Cooling System

				Max U	Max Cooling @ Air Flow Static Restriction, Unhoused (inches water/mm water)Housed in Free Air, No Air Discharge Restriction									
				0.0/0.0	0.25/6.4	0.5/12.7	0.75/19.1	1.0/25.4	Weather	Sound Level 1	Sound Level 2			
	Fuel Type	Duty	Rating (kW)		Maximum allowable ambient temperature, degree C									
60	Diocol	Standby	125	50	50	50	50	50	50	50	50			
Hz	Diesei	Prime	112.5	50	50	50	50	50	50	50	50			

Notes:

- 1. Data shown are anticipated cooling performance for typical generator set.
- 2. Cooling data is based on 1000 ft (305 m) site test location.
- 3. Generator set power output may need to be reduced at high ambient conditions. Consult generator set data sheet for derate schedules.
- 4. Cooling performance may be reduced due to several factors including but not limited to: Incorrect installation, improper operation, fouling of the cooling system, and other site installation variables.

Alternator data sheet

Frame size: UC3F

Characteristics								
Weights:	Wound	stator asse	embly: 3	337 lb		153 k	g	
	Rotor a	assembly:	4	419 lb		190 k	g	
	Comple	ete alternat	or:	1175 lb		533 k	g	
Maximum speed:			2	2250 rpm				
Excitation current:	Full loa	ıd:	2	2 Amps				
	No load	d:	(0.5 Amps				
Insulation system:	Class H	H throughou	ut					
1 Ø Ratings	(1.0 power factor)		60	Hz			50 Hz	
(Based on specific tempera ambient temperature)	ture rise at 40 ℃	Double	e delta	4 lead		Double	delta	
		100	10.40	100/040		110-1	20	
10E °C rice retinge		<u>120</u>	/ <u>240</u> /100	<u>120/240</u>		<u>220-2</u>	<u>240</u>	
125 °C rise ratings		109/	/109	105/100		90/9	7	
		Jinner bro	ad range	125/125 LBB*	347/600	07/0	Broad range	
3 Ø Ratings	(U.8 power factor)				347/000			
(Based on specified temper at 40 °C ambient temperatu	rature rise Ire)	120/208 <u>240/416</u>	139/240 <mark>277/480</mark>	190-208 <u>380-416</u>	<u>347/600</u>	110/190 <u>220/380</u>	120/208 <u>240/415</u>	127/220 <u>254/440</u>
150 ℃ Rise ratings	kW	150	170	148	170	136	136	128
, i i i i i i i i i i i i i i i i i i i	KVA	188	213	185	213	170	1/0	160
125 ℃ Rise ratings	KVV kV/A	145 181	165 206	144	165 206	128	128	120 150
	kW	130	150	128	150	116	116	108
105 ℃ Rise ratings	kVA	163	188	160	188	145	145	135
	kW	112	128	110	128	101	101	94
80 °C Rise ratings	kVA	140	160	138	160	126	126	118
3 Ø Reactances	(per unit, ±10%)							
(Based on full load at 105 °	C rise rating)							
Synchronous		2.21	1.92	1.68	1.97	2.04	1.71	1.42
Transient		0.18	0.15	0.14	0.16	0.17	0.15	0.12
Subtransient		0.13	0.11	0.09	0.10	0.12	0.10	0.09
Negative sequence		0.14	0.12	0.10	0.11	0.13	0.11	0.09
Zero sequence		0.08	0.07	0.07	0.07	0.08	0.07	0.06
3 Ø Motor starting	g							
Maximum kVA	(Shunt)	5	16	516	516		367	
(90% sustained voltage)	(PMG)	60	07	607	607		458	
Time constants	(Sec)							
Transient	Insient			0.035	0.035 0.035			
Subtransient		0.011		0.011	0.011	0.011		
Open circuit		0.9	900	0.900	0.900	0.900		
DC		0.0	009	0.009	0.009		0.009	

Alternator data sheet

Frame size: UC3F

Windings	(@ 20°C)				
Stator resistance	(Line to Line, Ohms)	0.0480	0.0400	0.0700	0.0480
Rotor resistance	(Ohms)	0.0480	0.0400	0.0700	0.0480
Number of leads		12	12	6	12

* Lower broad range 110/190 thru 120/208, 220/380 thru 240/416.

A-weighted Sound Pressure Level @ 7 meters, dB(A)

See notes 2, 5 and 7-11 listed below

Configuration	Exhaust	Applied				Position	(Note 2)				8 Position Average
		Load	1	2	3	4	5	6	7	8	
Standard – Unhoused	Infinite Exhaust	100% Standby	84	86	87	87	82	88	88	87	87
F216-2 Weather Aluminum	Mounted	100% Standby	86	86	82	86	83	88	82	85	85
F231-2 Sound Attenuated Level 1, Aluminum	Mounted	100% Standby	83	79	73	74	74	74	74	80	78
F217-2 Sound Attenuated Level 2, Aluminum	Mounted	100% Standby	72	72	70	72	72	72	71	72	72

Average A-weighted Sound Pressure Level @ 1 meter, dB(A)

See notes 1	5 and 7-14 listed below	v
See notes 1,	5 and 7-14 listed below	v

						Oct	ave Ban	d Cente	er Freque	ency (Hz)				Overall
Configuration	Exhaust	Load	16	31.5	63	125	250	500	1000	2000	4000	8000	16000	Pressure Level
Standard – Unhoused	Infinite Exhaust	100% Standby	N/A	45	68	80	88	91	91	90	88	85	90	98
F216-2 Weather Aluminum	Mounted	100% Standby	N/A	42	67	82	89	88	89	87	84	79	83	95
F231-2 Sound Attenuated Level 1, Aluminum	Mounted	100% Standby	N/A	45	61	74	80	80	81	79	75	76	74	87
F217-2 Sound Attenuated Level 2, Aluminum	Mounted	100% Standby	N/A	45	62	72	77	76	76	75	72	71	66	83

A-weighted Sound Pressure Level @ Operator Location, dB(A) See notes 1, 3, 5 and 7-14 listed below

						Oct	ave Bai	nd Cente	er Freque	ency (Hz))			Overall
Configuration	Exhaust	Applied Load	16	31.5	63	125	250	500	1000	2000	4000	8000	16000	Sound Pressure Level
Standard – Unhoused	Infinite Exhaust	100% Standby	N/A	42	68	79	84	89	89	90	88	88	91	97
F216-2 Weather Aluminum	Mounted	100% Standby	N/A	41	66	78	82	84	81	80	77	74	80	90
F231-2 Sound Attenuated Level 1, Aluminum	Mounted	100% Standby	N/A	50	65	74	80	81	81	77	74	73	65	87
F217-2 Sound Attenuated Level 2, Aluminum	Mounted	100% Standby	N/A	50	66	75	80	79	78	75	72	71	61	85

A-weighted Sound Power Level, dB(A) See notes 1.3 and 6-14 listed below

						Oc	tave Bar	nd Cente	r Freque	ncy (Hz)				Overall
Configuration	Exhaust	Load	16	31.5	63	125	250	500	1000	2000	4000	8000	16000	Sound Power Level
Standard – Unhoused	Infinite Exhaust	100% Standby	N/A	62	85	97	105	108	108	107	105	103	108	115
F216-2 Weather Aluminum	Mounted	100% Standby	N/A	60	84	100	106	106	107	104	101	97	100	113
F231-2 Sound Attenuated Level 1, Aluminum	Mounted	100% Standby	N/A	63	79	92	98	98	99	97	93	94	92	105
F217-2 Sound Attenuated Level 2, Aluminum	Mounted	100% Standby	N/A	64	80	90	95	94	94	93	90	89	84	102

Exhaust Sound Power Level, dB(A)

See notes 4 and 6-14 listed below

Configuration	Applied Load	Octave Band Center Frequency (Hz)											
		16	31.5	63	125	250	500	1000	2000	4000	8000	16000	Sound Power Level
Open Exhaust (No Muffler)	100% Standby	N/A	62	94	108	116	117	114	112	112	104	91	122

Global Notes:

1. Sound pressure levels at 1 meter are measured per the requirements of ISO 3744, ISO 8528-10, and European Communities Directive 2000/14/EC as applicable. The microphone measurement locations are 1 meter from a reference parallelepiped just enclosing the generator set (enclosed or unenclosed).

2. Seven-meter measurement location 1 is 7 meters (23 feet) from the generator (alternator) end of the generator set, and the locations proceed counterclockwise around the generator set at 45° angles at a height of 1.2 meters (48 inches) above the ground surface.

3. Sound Power Levels are calculated according to ISO 3744, ISO 8528-10, and/or CE (European Union) requirements.

4. Exhaust Sound Levels are measured and calculated per ISO 6798, Annex A.

5. Reference Sound Pressure Level is 20 µPa

6. Reference Sound Power Level is 1 pW (10⁻¹² Watt)

7. Sound data for remote-cooled generator sets are based on rated load without cooling fan noise.

8. Sound data for the generator set with infinite exhaust do not include the exhaust noise contribution

9. Published sound levels are measured at CE certified test site and are subject to instrumentation measurement, installation, and manufacturing variability.

10. Unhoused/Open configuration generator sets refers to generator sets with no sound enclosures of any kind.

11. Housed/Enclosed/Closed/Canopy configuration generator sets refer to generator sets that have noise reduction sound enclosure installed over the generator set and usually integrally attached to the skid base/base frame/fuel container base of the generator set.

12. Published sound levels meet the requirements India's Central Pollution Control Board (Ministry of Environment & Forests), vide GSR 371 (E), which states the A-weighted sound level at 1 meter from any diesel generator set up to a power output rating of 1000kVA shall not exceed 75 dB(A).

13. For updated noise pollution information for India see website: http://www.envfor.nic.in/legis/legis.html

14. Sound levels must meet India's Ambient Air Noise Quality Standards detailed for Daytime/Nighttime operation in Noise Pollution (Regulation and Control) Rules, 2000

Dual wall sub-base diesel fuel tanks -

10-200 kW generator sets

Description

Cummins[®] offers two series of fuel tanks (basic series and regional series) for the 10~125 kW diesel generator sets. The "basic" series of fuel tanks provide economical solutions for areas with no or minimal local/regional code requirements on diesel fuel tanks. The footprint of "basic" tanks matches the generator set's footprint. The "regional" series of fuel tanks provide flexible and upgradable solutions for areas with extensive local/regional code requirements on diesel fuel tanks. The footprint of the "regional" series of fuel tanks extends beyond the generator set to allow room for installation of optional features at factory or accessories in the field for meeting local/regional code requirements or customer specification on diesel fuel tanks. All fuel tanks and optional features are compatible with factory installed enclosures.

These tanks are constructed of heavy gauge steel and include an internally reinforced baffle structure for supporting the generator set. The fuel tank design features fewer seams and welds for better corrosion resistance performance.

These tanks are pre-treated with a conversion coating and then finished with a textured powder paint. The paint has superior UV and chemical resistance with best-in-class adhesion, flexibility, and durability to resist chipping and substrate corrosion. Both interior compartments are treated with a rust preventative for extended corrosion protection.

These tanks are UL and ULC Listed as secondary containment generator base tanks. Inner and outer containments are leak checked per UL and ULC testing procedures to ensure their integrity.

These fuel tanks are offered in various sizes to satisfy different fuel capacities requirements.

Engine	D1703M	V2203M	4BT3.3-G5	4BTAA3.3-G7	QSB5-G5	QSB7-G5
	C10D6	C20D6	C25D6	C50D6	C50D6C	C125D6D
	C15D6		C30D6	C60D6	C60D6C	C150D6D
Generator set			C35D6		C80D6C	C175D6D
model names		•	· C40D6		C100D6C	C200D6D
		•			C125D6C	

Compatible generator set model

Regional fuel tanks

Standard features:

UL 142 and ULC-S601 listed - Minimum 110% secondary IBC 2012 and 2015 certified - All optional features are seismically certified with this range of tanks and generator sets. Requires factory-installed 2 ft vent extensions or higher.

UL 142 & ULC-S601 listed - Minimum 125% secondary containment capacity.

NFPA & IFC - Capable of meeting NFPA 30, NFPA 110, and IFC codes with available factory-installed optional features.

Emergency pressure relief vents - Ensure adequate ventilation of the primary and secondary tank compartments under extreme temperature and emergency conditions.

Normal atmospheric vent - "Mushroom" style vent ensures adequate venting of the primary tank during fill, generator set running, and temperature variations. Raised above fuel fill.

Raised fuel fill - Includes lockable sealed fuel cap.

Lifting eyes - Allow lifting of fuel tank with generator set installed.

Optional features:

Secondary containment basin switch (rupture switch) -Activates a warning in the event of a primary tank leak. Side Mounted.

Low fuel level switch - Activates a warning when 40% of the fuel is left in the tank.

Fuel level gauge - Provides direct reading of fuel level. Top mounted.

Electric fuel level sender with gauge - Allows remote electrical monitoring of fuel tank level. Flying leads for customer connection.

Tank to foundation clearance - 2-inch bolt-thru risers allow visual inspection under tank including rodent barrier.

Spill containment box for fuel fill - 5 gallon capacity with integral drain (to tank). Lockable lid.

Overfill prevention valve - Shuts off fuel flow during filling at approximately 95% full*. Includes fill down tube, as needed, to terminate within 6" of the bottom of the fuel tank. Uses a 2 inch type "F" cam lock adapter for filling.

High fuel switch - Activates at 90% of full fuel level. Flying leads for customer connection.

High fuel alarm panel - Provides audible & visual alarm when fuel level reaches 90% of full fuel level.

Fill drop tube - Terminates fuel fill location within 6" of the bottom of the fuel tank.

Vent extensions - Terminate normal and emergency vents (both primary and secondary) a minimum of 12 ft above the bottom of tank.

Seismic vent extensions - 2 ft normal and emergency (both primary & secondary) extensions to meet IBC/OSHPD seismic requirements.

* The OFPV inherently shuts off fuel at approximately 2" below the top of the fuel tank. Some tanks will shut off below this 95% fill level.

*Picture is for reference only. See outline drawing for tank specific information by model.

ROA	inna	1 12	nve
neu	ισια	ιια	IIN D
- 3			-

· · ·

Generator set Standby power output	Generator set model	Engine model	Fuel consumption (100% load, Standby)	Tank feature code	Minimum run time feature	Tank dimensions (L x W x H)	Nominal dry weight*	Tank usable volume	Actual run time w/o OFPV	Actual run time w/OFPV
kW			gal/hr		hr	inch	lbs	gal	hr	hr
				C301-2	24	87.6 x 34 x 15	510	74	66	56
	040.00	D. (Tool)		C303-2	48	87.6 x 34 x 15	510	74	66	56
10	C10 D6	D1703M	1.12	C305-2	72	87.6 x 34 x 23	723	132	118	107
				C307-2	96	87.6 x 34 x 23	723	132	118	107
				C301-2	24	87.6 x 34 x 15	510	74	53	45
Generator set Standby power output G G kW 1 10 1 15 1 20 1 25 1 30 1 35 1 60 1 50 1 60 1 50 1 100 0 100 0 125 0		D1700M	1.00	C303-2	48	87.6 x 34 x 15	510	74	53	45
15	C15 D6	D1703W	1.38	C305-2	72	87.6 x 34 x 23	723	132	95	86
				C307-2	96	87.6 x 34 x 32	962	195	141	132
				C301-2	24	87.6 x 34 x 15	510	74	41	35
20	C20 D6	V0000M	1.01	C303-2	48	87.6 x 34 x 23	723	132	73	66
20	C20 D6	V2203IVI	1.01	C305-2	72	87.6 x 34 x 32	962	195	108	101
				C307-2	96	87.6 x 34 x 32	962	195	108	101
				C301-2	24	121 x 34 x 10.5	514	74	31	25
25	C25 D6	4PT2 2 C5	2.42	C303-2	48	121 x 34 x 16.2	686	132	54	47
25	025 00	4013.3-03	2.42	C305-2	72	121 x 34 x 22.1	879	195	80	73
				C307-2	96	121 x 34 x 29.5	1120	263	109	101
				C301-2	24	121 x 34 x 10.5	514	74	26	21
30	C30 D6	4BT3 3-G5	2.81	C303-2	48	121 x 34 x 22.1	879	195	69	63
00	000 00	4010.0-00	2.01	C305-2	72	121 x 34 x 29.5	1120	263	94	87
				C307-2	96	121 x 34 x 42.0	1461	389	138	132
35 C35 D6				C301-2	24	121 x 34 x 16.2	686	132	42	36
	C35 D6	4BT3 3-G5	3 16	C303-2	48	121 x 34 x 22.1	879	195	62	56
55	033 00	4010.0-00	5.10	C305-2	72	121 x 34 x 29.5	1120	263	83	77
				C307-2	96	121 x 34 x 42.0	1461	389	123	117
				C301-2	24	121 x 34 x 16.2	686	132	36	31
40	C40 D6	4BT3 3-G5	3.66	C303-2	48	121 x 34 x 22.1	879	195	53	48
10	010 20	1010.0 00	0.00	C305-2	72	121 x 34 x 42.0	1461	389	106	101
				C307-2	96	121 x 34 x 42.0	1461	389	106	101
		1074422		C301-2	24	121 x 34 x 16.2	686	132	31	27
50	C50 D6	401AA3.3- G7	4.25	C303-2	48	121 x 34 x 29.5	1120	263	62	58
				C305-2	72	121 x 34 x 42.0	1461	389	92	87
		4BT443 3-		C301-2	24	121 x 34 x 16.2	686	132	26	23
60	C60 D6	G7	5.04	C303-2	48	121 x 34 x 29.5	1120	263	52	49
				C305-2	72	121 x 34 x 42.0	1461	389	77	73
				C301-2	24	154 x 40 x 22	1388	250	47	45
50	C50D6C	QSB5-G5	5.30	C303-2	48	154 x 40 x 32	1657	425	80	76
				C305-2	72	154 x 40 x 32	1657	425	80	76
				C307-2	96	154 x 40 x 46	2096	625	118	112
				C301-2	24	154 x 40 x 22	1388	250	41	39
25 30 30 35 40 50 60 60 60 60 60 60 60 60 60 6	C60D6C	QSB5-G5	6.10	C303-2	48	154 x 40 x 32	1657	425	70	66
				C305-2	72	154 x 40 x 46	2096	625	102	97
			ļ	C307-2	96	154 x 40 x 46	2096	625	102	97
<u> </u>	0007-0	000-0-		C301-2	24	154 x 40 x 22	1388	250	34	33
80	C80D6C	QSB5-G5	7.30	C303-2	48	154 x 40 x 32	1657	425	58	55
			L	C305-2	/2	154 x 40 x 46	2096	625	85	81
100	0400500	0005.05	0.00	C301-2	24	154 x 40 x 22	1388	250	28	27
100	C100D6C	QSB2-G2	8.90	C303-2	48	154 x 40 x 32	1657	425	48	45
				C305-2	/2	154 x 40 x 46	2096	625	70	66
125	C125D6C	QSB5-G6	10.30	0301-2	24	154 x 40 x 22	1388	250	24	23
	I	I		C303-2	48	154 x 40 x 46	2096	625	60	58

* All weights are approximate.

Regional tanks

Generator set Standby power output	Generator set model	Engine model	Fuel consumption (100% load, Standby)	Tank feature code	Minimum run time feature	Tank dimensions (L x W x H)	Nominal dry weight*	Tank usable volume	Actual run time w/o OFPV	Actual run time w/OFPV
kW			gal/hr		hr	inch	lbs	gal	hr	hr
				C301-2	24	180x40x21	1477	351	34	30
105	CIDEDOD			C303-2	48	180x40x42	2302	737	72	69
125	012000		10.1	C305-2	72	180x40x42	2302	737	72	69
				C307-2	96	180x65.5x35.3	3552	1055	104	98
				C301-2	24	180x40x21	1477	351	30	26
150	C150D6D		11.7	C303-2	48	180x40x42	2302	737	63	59
		QSB7-G5		C305-2	72	180x65.5x35.3	3552	1055	90	84
				C301-2	24	180x40x21	1477	351	26	23
175	C175D6D		13.3	C303-2	48	180x40x42	2302	737	55	52
				C305-2	72	180x65.5x35.3	3552	1055	79	74
				C301-2	24	180x40x21	1477	351	24	21
200	C200D6D		14.9	C303-2	48	180x40x42	2302	737	49	47
				C305-2	72	180x65.5x35.3	3552	1055	72	66

Certifications/standards/codes

UL 142 Listed - Cummins dual wall sub-base tanks are UL Listed and constructed in accordance with Underwriters Laboratories Standard UL 142 "steel aboveground tanks for flammable and combustible liquids," as a "secondary containment generator base tank"

NFPA - Cummins tanks are built in accordance with all applicable NFPA codes:

- NFPA 30 - Flammable and Combustible Liquids code

- NFPA 37 Standard for Installation and use of Stationary Combustible Engine and Gas Turbines
- NFPA 110 Standard for Emergency and Standby Power Systems

ISO9001 - This product was designed and manufactured in facilities certified to ISO9001.

ULC - Cummins tanks are built in accordance with all applicable ULC codes

For more information contact your local Cummins distributor or visit power.cummins.com

Our energy working for you.™

Section 3 – Generator Drawings

										1								
ECO	rel no -176532	REV	NO	PRODU	ICTION	RELEA	SE					D∎N DAH	ckd DAH	APV GILL	D E T T	DATE 04APF	818	
NOTES																		
1 1		ME N S	101	IS AR	REEF	RENC	F II	NIES	S 5F	PECIE	= 1 C	Δ1 I ⁻	у т			FD		
Δ	REFER	TO	CIE		BREAK	(FR O	UTI I	NF D	RAWI	ING	TOR	FLI	FCT	RICAL	S	T II R - II	P	
<u></u>	AREA	OR	ŠPE	CIFIC	C BREA	AKERS					011		201		- 0	100 0		D
3.	CONTRO	DL I Ble	N T E	RFACE	E CONM LONS.	NECTI	ONS	SHOU	ld E	BE M/	ADE	WI	ΤH					-
$\overline{4}$	Ø21 [0.8] Н	OLES	MARKE	DBY	\triangle	FOR	SEC	URIN	IG T	O N	1001	ITING	SL	JRFACE		
	HOLES	IN DED	GEN FOF	ERAT(OR SET ACHMEN	F BAS NT TO	E AT THE	T H E MO U	SE L NTIM	.OCA NG SI	T I OI JRF /	NS A ACE	ARE					
	IF GEI FUEL	NERA TANK	ATOF (OL	SET ITLINI	IS MO E DRAV	DUNTE VING	D ON FOR	A F LOCA	UEL TION	TANH N OF	≺, I TAI	REFI NK	ER ATT.	TO ACHME	ENT			
-	POINTS	S.					=					=						
5.	ELECT		GEN AL,	FUEL	AND C	DTHER	FOU	NDAT	ION	SPE(JIL CIF	ICS	5 FI	ЭК				
6.	GENSE	T_SL	JPPL	IED	NITH F		BLE	FUEL		NES	THA	T C.	AN I	ЗE				-
	CONNER	. E L) IC SI			NIERF	ACE E26	1 10	IS.	עודט	17	<i>и</i> п	мен	NDT	мат	Ē		
	6.2	TERN	. 30 41 N A R F	TION	LINE.	. 070 . 030	[37	1 10	NG V	VI Т Н	17.	4 II 4 II	мен	NPT	ма			
~	U.L	TERM	4 I N A	TION		. 550	1.51	1 10	10 1		17.		NC II					
<u>_7</u> .	OIL DI	RAIN	N E)	TENS	ION:	5/8	INCH	HOS	ΕI.	D.								
8.	FOR IE	BC S EISM	SEIS AIC	MIC (INST/	CERTIF Allati	FIED ION R	INST EQUI	ALLA REME	TION NTS	NS, S DRAV	SEE Nino	GEI G.	NSE	T				C
9.	DRY WI	EIGH	1T =	WET	WEIGH	ΗT -	38.5	KG	(85	LB)								
$\overline{10}$	6 X Ø 7	. 3	HOL	ES FC	R CUS	TOME	R-SU	PLII	ED C	00L I	NG	ЕXН	AUS	Τ				
\wedge	AIR DI	JCT	ADA	PTER														
<u> /// \</u>	FUEL 3	SUPF	'L ĭ	AND	KEIUKI	N 510	8-UP	AKF	Α.									
																		$\left \leftarrow\right $
																		_
																		в
					TAR	U AT	LON											
ΠΔΤΛ	СНЕЕТ	#		DIM	Δ	n –	IM F		G	ENS	ΕT	WE	ΤW	EIGH	IT			
		π			^	U		,	KG LE						-	_		-
ADS-2	209 209			4	4 3		507			134	+		295:					
ADS-2	210			147	0		500			44	2			3179)			
ADS-2	211			149	3		499			148	0	4		3262	2	_		
ADS-2	212 213			152	0 6		495 495			158	ა 3	+		349 349		-		
			I		•						-			5171				
																		A
CI	25D6	D,	(C I 5	0 D 6	D,	CI	751	D6[),	Cí	20	0 D	6 D				
	DWN	D H() F ME	ISTE	2	-unit	iin ^{is}		C	ummin	s P	OWE	RG	ENER/	TION	J		
	APVD) н() <u>G</u>	ULLE	TT	١		ø	011	TI I	NF	, GF	E N S	SFI	-				
		04AF	PRIE TINNE	IRST USED	ON	SITE	CODE	DING		0.00	05	0	_			CAD SHE	ET	
CUNMINS INC.	TOLERANC ASME Y	ING, SI 14.5-2	EE 2009	ARR	JW	1 P(Jŀ	D	A ()	6UC •	85	Ŏ				OF	?	
										I								
													NI-	m c ·	~~	6000		

Drawing Name: A060C859 Revision: A Part Name: A060C858 Revision: A ECO-176532 Sheet 1 of 3

Drawing Name: A057P199 Revision: A Part Name: A057P198 Revision: A ECO-170441 Sheet 1 of 4

Drawing Name: A057P199 Revision: A Part Name: A057P198 Revision: A ECO-170441 Sheet 2 of 4

Section 4 – Generator Accessories

A048G602 10 A 50/60 Hz A051H785 20 A 50/60 Hz

Description

Cummins[®] fully automatic battery chargers are constant voltage/constant current chargers incorporating a 4-stage charging algorithm. Designed for use in applications where battery life and reliability are important; these chargers, complete with built-in equalize charge capability, are ideal for stationary or portable starting battery charging service.

To achieve optimum battery life, a 4-stage charging cycle is implemented. The four charging stages are constant current, high-rate taper charge, finishing charge, and maintaining charge. During the constant current cycle, the charger operates at maximum possible output in the fast charge mode. During the high-rate taper charge cycle the charger stays at fast charge voltage level until battery current acceptance falls to a portion of the chargers rated output. During the finishing charge cycle the charger operates at the float voltage and completes the battery charge. During the maintaining charge cycle the charger supplies only a few milliamps required by the battery to stay at peak capability.

An optional temperature sensor (A043D534) may be used to adjust charging voltage based on temperature of the battery. Use of a battery temperature sensor helps to increase battery life by preventing over or under charging. The battery temperature sensor also protects the battery from overheating. Temperature compensation sensor is required for all applications when battery charger and battery are located in different temperature or battery heater is being used.

Battery chargers are field-configurable for charging either 12 or 24 VDC battery systems at 50/60 Hz operation. Simple jumper selectors enable selection of output voltage and battery type.

Features

Protection – Surge protected to IEEE and EN standards. All models include single pole cartridge type fuses mounted on the printed circuit board to protect against input or output overcurrent.

Easy Installation – Clearly marked terminal blocks and panel knockouts provide convenient connections of input and output leads.

User Display – Output voltage and current, fault information and status are indicated on the front panel. Includes precision ammeter and voltmeter.

Monitoring – Status LED indicators are provided to show the condition of the charger. LED's on the right side of the monitor indicate operational functions for Temperature Compensation active (Green), AC on (Green), Float (Green) or Boost (Amber) mode, as well as Battery Fault (Red). LED's on the left side of the monitor illuminate (in Red) when Charger fail, High or Low VDC or AC fail occur.

Adjustable Float Voltage – Float voltage can be set, using easy to understand jumpers, for optimum battery performance and life.

Construction – NEMA-1 (IP20) corrosion resistant aluminium enclosure designed for wall mounting.

Faults – The charger senses and annunciates the following fault conditions: AC power loss, battery overvoltage, battery under voltage, battery fault conditions and charger failure. Includes an individual 30 volt/2-amp isolated contact for each alarm.

Vibration Resistant Design – complies with UL991 class B vibration resistance requirements.

Listed – C-UL listed to UL 1236 CSA standard 22.2 No 107.2-M89. Suited for flooded and AGM lead acid and NiCd batteries in generator set installations.

Warranty - 5 year CPG warranty.

Status and Fault LED

Field Selectable Jumper

Specifications

Performance and Physical Characteristics

Output:	Nominal voltage	12VDC* or 24VDC				
	Float voltage – 12VDC batteries	12.87, 13.08, 13.31, 13.50*, 13.62, 14.30				
	Float voltage – 24VDC batteries	25.74, 26.16, 26.62, 27.00*, 27.24, 28.60				
	Equalize-voltage	6.5% above float voltage sensing				
	Output voltage regulation	±0.5% (1/2%) line and load regulation				
	Maximum output current	10 or 20 amps nominal				
	Equalize charging	Battery interactive auto-boost				
Input:	Voltage AC	120, 208, 240 ±10%				
	Frequency	60/50 Hz +5%				
Approximate net weight:		10A: 25 lbs. (11.36 Kg) 20A: 50 lbs. (22.68 Kg)				
Approximate dimensions:	height x width x depth-in	10A: 12.50" x 7.66" x 6.50"(318 x 195 x 165 mm) 20A: 13.06" x 13.95" x 6.83"(332 x 354 x1 73 mm)				
Ambient temperature oper	ration: At full rated output -	- 4 °F to 104 °F (-20 °C to 40 °C)				

Note:

- Battery charger comes with default settings of 12VDC and 13.50/27.00VDC float voltage and can be changed to the battery manufacture recommendations. Replacement printed circuit board and f uses are identified in the Owner's Manual (10A: A050S537 and 20A: A051X126) which resides in Quick Serve On-Line. Service parts can be purchased through the Memphis Distribution Center. The PC board replacement instruction sheet (10A: A052N073, 20A: A053W929) and service manual (A050D829) is also available.
- Installation and application must comply with "section 4.5.3 batteries and battery charger" of application guide T-030 (Liquid Cooled Generator Set Application Manual A040S369).

Caution:

- 1. Higher input voltages (i.e. 480VAC or 600VAC) can be applied if a transformer with a 120VAC-240VAC output is installed. Higher input voltages (i.e. 480VAC or 600VAC) can be applied if a transformer with a 120VAC-240VAC output is installed. For voltages higher than 240 VAC, stepdown transformer must be used. Review the respective Owner/Installation manual A050S537 for 10Amp and A051X126 20A chargers for supplier recommended stepdown transformer requirements.
- 10Amp battery charger is recommended for genset applications with 1 or 2 factory provided batteries. 20Amp battery charger is recommended for Cummins Genset applications with 3 or 4 factory provided batteries. Please consider the auxiliary DC loads connected to the genset batteries and size this charger as per the T-030 application guide to prevent misapplication issues.
- 3. Back feed to a utility system can cause electrocution and/or property damage. Do not connect generator sets to any building electrical system except through an approved device or after building main switch is open.
- 4. For professional use only. Must be installed by a qualified service technician. Improper installation presents hazards of electrical shock and improper operation, resulting in severe personal injury and/or property damage.
- 5. Use this charger for charging LEAD-ACID or LIQUID ELECTROLYTE NICKEL-CADMIUM batteries only. Do not use this battery charger for charging dry cells, alkaline, lithium, nickel-metal hydride, or sealed nickel-cadmium batteries that are commonly used with home appliances. These batteries may burst and cause injuries to persons and damage to property.
- 6. Do not parallel these battery chargers with any other charging system.

For more information contact your local Cummins distributor or visit power.cummins.com

Our energy working for you.™

©2021 Cummins Inc. All rights reserved. Cummins is a registered trademark of Cummins Inc. PowerCommand, AmpSentry, InPower and "Our energy working for you." are trademarks of Cummins Inc. Other company, product, or service names may be trademarks or service marks of others. Specifications are subject to change without notice. NAAC-5602-EN (06/21) PDA059Y464

[PIC® Creo® Parametric 4	3	}	, le	2				1	
ĺ				V				REL NO REV NO 1 ECO-181477 E 1 2	EVISION DIN CKD LDD SHEET 6 RT MT N_TL CONE (AL) ADD TABLE RT MT N_TL CONE (AL) ADD TABLE	APVD DATE IULADHAR 05NOV18 TULADHAR 05NOV18
						NO /	TES: ⚠ NEUTRAL LUG (L) #14-27	0	ICCESSORIES' TABLE RT MT N.TU	ULADHAR 05NOV18
						Ĺ				
						L	3∑ NEUTRAL LUG (I) #6-350 ⚠️ NEUTRAL LG (2) #2-600	kcmil. kcmil OR (4) I/0-	250 kcmil.	
D					FRAME	LUG	LUG WIRE RANGE	WIRE STRIP LENGTH	CB LUG TORQUE	D
					H-FRAME THERMAL-MAGNETIC 15-150 AMP 80% RATED	AL I 50HD	(1) AL #14 - 3/0 AWG (1) CU #14 - 3/0 AWG	0.65 inch	#14 - #10 50 lb-in (6.0 Nm) #8 - 3/0 120 lb-in (14.0 Nm)	
				-	J-FRAME THERMAL-MAGNETIC 175 AMP 80% RATED	AL I 75HD	() AL #4 - 4/0 AWG () CU #4 - 4/0 AWG	l.00 inch	225 lb-in (26.0 Nm)	
				-	J-FRAME THERMAL-MAGNETIC 200-250 AMP 80% RATED	AL 250 JD	() AL 3/0 - 350 kcmil () CU 3/0 - 350 kcmil	l.00 inch	225 lb-in (26.0 Nm)	
_					J-FRAME LSI ELECTRONIC TRIP ADJUSTABLE TRIP 70-250 AMP 100% RATED, COPPER CONDUCTORS ONLY	CU250JD	(1) CU 1/0 - 300 kcmil	1.00 inch	250 lb-in (28.0 Nm)	-
					L-FRAME (400) LSI ELECTRONIC TRIP ADJUSTABLE TRIP 125-400 AMP 80% RATED	AL 400L 6 1 K 3	(1) AL #2 - 500 kcmil (1) CU #2 - 600 kcmil	l.20 inch	442 lb-in (50 Nm)	
				-	L-FRAME (400) LSI ELECTRONIC TRIP ADJUSTABLE TRIP 125-400 AMP 100% RATED, COPPER CONDUCTORS ONLY	ALGOOLS52K3	(2) CU 2/0 - 500 kcmil	(1) 1.20 inch (1) 2.40 inch	442 lb-in (50 Nm)	
c				-	L-FRAME (600) LSI ELECTRONIC TRIP ADJUSTABLE TRIP 200-600 AMP 80% RATED LOOK RATED COMPLICTORS ONLY	AL600LS52K3	(2) AL 2/0 - 500 kcmil (2) CU 2/0 - 500 kcmil	() .20 inch () 2.40 inch	442 lb-in (50 Nm)	с
				-	P-FRAME MANUAL & AUTOMATIC LSI ELECTRONIC TRIP ADJUSTABLE TRIP 400, 600 & 800 AMP 80% AND 100% RATED	AL800LS52K3	(3) AL 3/0 - 500 kcmil (3) CU 3/0 - 500 kcmil	(3) 1.20 inch	442 lb-in (50 Nm)	
						1			<u> </u>	
\rightarrow										~
B										В
_										-
A										A
							ESS OTHERNISE SPECIFIER ALL		N	
						X ± 1 x ± 0 .x ± 0 .x ± 0 .x ± 0	NE NS LONG JAPE ⁻ IN WILL INF IT RS → INT ID 0.00-4.99 +0.15/-0.08 0.00-4.99 +0.15/-0.08 10.00-17.49 +0.25/-0.13 10.00-17.49 +0.25/-0.13 10.00-17.49 +0.25/-0.13 10.10-17.49 +0.25/-0.10 10.10-17.49 +0.25/-0.10 10	An Johnst SCALE PRINT C40 An Johnst Anvo P_LARSON OATE 02MAY16 Rists States in constraints	NI SITE CODE BROW PGF PLAD558603	BREAKER
l	4	3	3	\uparrow	2	± 1,0"	174 JUSED TEN TEN KUNDER TITLIG, TITLIG TENSER TO	r comiling find; Lassier fild is 2000 F	1	

						1					
REL NO	LTR C	NO I	PRODUCTION_	RELEASE			DNIN MK	CKD AG	APVD A_GRILLIOT	DATE	
		2	RESPONSIBLE	CIA ROLE	'STATIO	NARY	 MK	 46	 A GRILLIOT		
			ornori env	#NO 01/11	TORMAT	oenoe i		no		1130214	
											D
S PART	13	S M	ANUFACTUR	ER SOUR	CE COM	ITROLLEI	D.				
PLIED .I FC .2 FC	WI DR DR I	TH The Ele	LINE & LO RMAL-MAGN CTRONIC T	AD MECH ETIC TR RIP: CU	ANICAL IP: 4 FOR 9	LUGS L/CU. 0°C.	:				
NTERRU	PTI	NG	RATINGS		KA						
L/			240 Vac		25						-
SA/ OM			480 Vac 600 Vac		8						
FC 947	- 2		220/240	/ac	25/2	5					
cu/lcs	2		380/440/4	5 Vac	18/1	8					
0.1115											
TORQU	ьр IE =	A B	: #14-#10 : #8-3/0	AWG 50 AWG 120	, LB-IN LB-IN	I,75°C. I,75°C.					с
RAME : I	" E -	N I R	E STRIP L	ENGTH,	250 1	B-IN 7	5° ۲				
TUNUL)C -	17	0 AWG- 30	U KCHITT	2.JU L	.U-IN, I	JU				
											в
											-
											^
DEN S	6_GA	MBH	IIRE	TUIDE		Cummins I	POWE	RC	ENERATION		
APVD N	1_TL 1_PC	IL AD DZ O	HAR	Con L	BRFA	KFR C	I R (20	T		
DATE 2	4 S E	PI2	IRST USED ON	SITE CODE	DING SIZE A	042000				SHEET DING REV	
UP ASME YI	4.5N-1	E 994	ARROW	76F	DA	043W05 1	00			lorl C	J
						•					

Table 11: Circuit Breakers

<u>.</u>		4 - 6										4.0										1000 1	
Circuit Breaker		150		H-Fra	ame		25	U A	1-FL	ame	!	40	U A	L-⊢r	ame		600 A L-Frame			1200 A	L-Frame		
Circuit Breaker Type		HD	HG	HJ	HL	HR	JD	JG	JJ	JL	JR	LD	LG	LJ	LL	LR	LD	LG	LJ	LL	LR	LG	LL
Number of poles ¹		2, 3				3	2, 3	3			3	3, 4	1				3, 4			4			
Amperage Range (A)		15-	150				70 <mark>-</mark>	250				70-	400				200)-600)			700-120	0
UL 489 Circuit Breaker	Ratings	-																				-	
Breaking Canacity	240 Vac	25	65	100	125	200	25	65	100	125	200	25	65	100	125	200	25	65	100	125	200	—	—
(AIR)	480 Vac	18	35	65	100	200	18	35	65	100	200	18	35	65	100	200	18	35	65	100	200	—	—
	600 Vac	14	18	25	50	100	14	18	25	50	100	14	18	25	50	100	14	18	25	50	100	—	—
(kA rms)	250 Vdc ²	20	20	20	20	—	20	20	20	20	—	—	—	—	—	—	—	—	—	—	—	—	_
	500 Vdc ^{2, 3}	—	20	—	50	—	—	20	—	—	50	—	20	—	—	50	—	20	—	20	—	20	50
IEC 947-2 Circuit Break	ker Ratings																						
	220/240 Vac	25	65	100	125	150	25	65	100	125	150	25	65	100	125	150	25	65	100	125	150	—	—
	380/415 Vac	18	35	65	100	125	18	35	65	100	125	18	35	65	100	125	18	35	65	100	125	—	—
Ultimate breaking	440/480 Vac	18	35	65	100	125	18	35	65	100	125	18	35	65	100	125	18	35	65	100	125	—	-
capacity (Icu)	500/525 Vac	14	18	25	50	75	14	18	25	50	75	14	18	25	50	75	14	18	25	50	754	—	-
(kA rms)	690 Vac	—	—	-	—	20	—	—	—	—	20	—	—	—	—	20	—	—	—	—	20	—	—
	250 Vdc ²	—	—	-	—	—	20	20	20	20	—	—	—	—	—	—	—	—	—	—	-	—	—
	500 Vdc ^{2, 3}	—	—	-	—	—	20	20	20	20	—	—	—	—	—	—	—	—	—	—	-	—	—
Service breaking capacity (Ics)	% Icu	100	%				100)%				100)%				100)%				_	_
Insulation Voltage	V _i	750	Vac	;			750) Va	С			750) Va	С			750) Va	0			—	-
Impulse Withstand Voltage	V _{imp}	8 k\	/ac				8 k	Vac				8 k'	Vac				8 k'	Vac				—	_
Operational Voltage	Ve	690	Vac	;			690) Va	С			690) Va	С			690	690 Vac -				—	-
Sensor Rating	I _n	150 A			250 A			400 A				600) A				—	—					
Utilization Category	—	А					А					А					А					—	—
Operations (Open-Clos	e Cycles)																						
Without Current		400	0				500	00				500	00				500	00				—	
With Current			4000			1000			1000				100	00				—					
Protection and Measure	ements																						
Short-circuit protection	Magnetic only	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	—	—
	Thermal-magnetic	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	—	—	—	—	—	—	—	—	—	—	Х	Х
	Electronic	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	—	—
Overload/short-circuit	with neutral protection (Off-0.5-1-OSN) ⁵	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	_	_
protection	with ground fault protection	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	_	_
	with zone selective interlocking (ZSI) ⁶	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	_	_
Display / I, V, f, P, E, TH	D measurements /	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	_	_
	Front display module			1			l														<u>.</u>		<u> </u>
	(FDM121)	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	—	<u> -</u>
0.1		^ V	\sim	\sim	^ V	^ V	\sim	\sim	^ V	^ V	^ V	\sim	\sim	^ V	^ V	^ V	^ V	^ V	^ V	^ V	\sim	—	<u> </u>
Options	Listerias and slarma	Ň	^ V	Ň	^ V	^ V		× ×	^ V	^ V	^ V	^ V	×	^ V	^ V	^ V	A V	\sim	^ V	×		—	<u> </u>
	Histories and alarms	Ň	^ V	Ň	^ V	^ V		× ×	^ V	^ V	^ V	^ V	×	^ V	^ V	^ V	A V	\sim	^ V	×		—	<u> </u>
	Device status/sentral sem	Ň	^ V	Ň	^ V	^ V		× ×	^ V	^ V	^ V	^ V	×	^ V	^ V	^ V	A V	\sim	^ V	×		—	<u> </u>
Dimensione / Weight / /	Device status/control com	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	^	-	<u> </u>
Dimensions / weight / G		0.4	(1.00					(10)				40	00.00	2.4.0.)			40	00.10				10.00 (0	(0)
Dimensions	Height	6.4	(163	5)			1.5	(19)	1)			13.	38 (;	340)			13.	38 (3	340)			13.38 (3	40)
(Three-Pole Unit	Width	4.1	(104	-)			4.1	(104	4)			5.5	1 (14	40)			5.5	$\frac{1}{1}(14)$	40) 1 0)			5.51 (14	<u>)</u>
	Depth	3.4	(86)				3.4	(86))			4.3	3 (1)	10)			4.3	3 (11	10)		4.33 (110)		<u>))</u>
Weight - Ib. (Kg)		4.8	(2.2))			5.3	(2.4	.)			13.	2 (6.	.0)			13.	7 (6.	2)			13.7 (6.2	2)
	Unit Mount	X					X					X			X			Х					
	I-Line	X					X					X					X			— 			
Connections /	Rear Connection	Х					Х					Х			X			Χ′					
reminations	Plug-In	Х					Х					X			X			—					
	Drawout	Х					Х					Х					Х					<u> </u>	
	Optional Lugs	Х					Х					Х					Х					—	

¹ H and J-frame breakers with Micrologic trip units available only with three poles. The HJ, HL and the J-Frame two pole circuit breakers are three pole modules.

 2 $\,$ DC not available with PowerPact H, J or L-frame circuit breakers with Micrologic trip units.

³ 500 Vdc specific catalog numbers, ungrounded UPS systems only.

 4 $\,$ I_{\rm CS} for 600 A L-frame circuit breaker at 525 V is 19 kA.

⁵ OSN: Over Sized Neutral protection for neutrals carrying high currents (e.g. 3rd harmonics).

⁶ ZSI using restraint wires.

⁷ Rear connection is not available for 700–1200 A four pole L-frame circuit breakers.

21

PowerPact[™] H-, J-, and L-Frame Circuit Breakers Circuit Breakers

Table 16: H-Frame 150 A and J-Frame 250 A Electronic Trip UL Rated Circuit Breakers (600 Vac, 50/60 Hz) With Factory Sealed Trip Unit Suitable for Reverse Connection

Elec	tronic Trip	Unit	Sensor	Interrupting Ratin	g			
Туре	Function	Trip Unit	Rating	D	G	J1	L ²	R ²
Standard (80%) Rated O	Circuit Break	ers, 3P		·			<u>.</u>
			60 A ³	HDL36060U31X	HGL36060U31X	HJL36060U31X	HLL36060U31X	HRL36060U31X
Standard		2.02	100 A ³	HDL36100U31X	HGL36100U31X	HJL36100U31X	HLL36100U31X	HRL36100U31X
Stanuaru	LI	3.22	150 A ³	HDL36150U31X	HGL36150U31X	HJL36150U31X	HLL36150U31X	HRL36150U31X
			250 A ⁴	JDL36250U31X	JGL36250U31X	JJL36250U31X	JLL36250U31X	JRL36250U31X
			60 A ³	HDL36060U33X	HGL36060U33X	HJL36060U33X	HLL36060U33X	HRL36060U33X
Otendend		2.002	100 A ³	HDL36100U33X	HGL36100U33X	HJL36100U33X	HLL36100U33X	HRL36100U33X
Standard	LSI	3.252	150 A ³	HDL36150U33X	HGL36150U33X	HJL36150U33X	HLL36150U33X	HRL36150U33X
			250 A ⁴	JDL36250U33X	JGL36250U33X	JJL36250U33X	JLL36250U33X	JRL36250U33X
			60 A ³	HDL36060U43X	HGL36060U43X	HJL36060U43X	HLL36060U43X	HRL36060U43X
		5.04	100 A ³	HDL36100U43X	HGL36100U43X	HJL36100U43X	HLL36100U43X	HRL36100U43X
Ammeter	LSI	5.ZA	150 A ³	HDL36150U43X	HGL36150U43X	HJL36150U43X	HLL36150U43X	HRL36150U43X
			250 A ⁴	JDL36250U43X	JGL36250U43X	JJL36250U43X	JLL36250U43X	JRL36250U43X
			60 A ³	HDL36060U53X	HGL36060U53X	HJL36060U53X	HLL36060U53X	HRL36060U53X
-		5.05	100 A ³	HDL36100U53X	HGL36100U53X	HJL36100U53X	HLL36100U53X	HRL36100U53X
Energy	LSI	5.2E	150 A ³	HDL36150U53X	HGL36150U53X	HJL36150U53X	HLL36150U53X	HRL36150U53X
			250 A ⁴	JDL36250U53X	JGL36250U53X	JJL36250U53X	JLL36250U53X	JRL36250U53X
			60 A ³	HDL36060U44X	HGL36060U44X	HJL36060U44X	HLL36060U44X	HRL36060U44X
Ammeter	1.010	0.04	100 A ³	HDL36100U44X	HGL36100U44X	HJL36100U44X	HLL36100U44X	HRL36100U44X
	LSIG	6.2A	150 A ³	HDL36150U44X	HGL36150U44X	HJL36150U44X	HLL36150U44X	HRL36150U44X
			250 A4	JDL36250U44X	JGL36250U44X	JJL36250U44X	JLL36250U44X	JRL36250U44X
			60 A ³	HDL36060U54X	HGL36060U54X	HJL36060U54X	HLL36060U54X	HRL36060U54X
-	1.010	0.05	100 A ³	HDL36100U54X	HGL36100U54X	HJL36100U54X	HLL36100U54X	HRL36100U54X
Energy	LSIG	6.2E	150 A ³	HDL36150U54X	HGL36150U54X	HJL36150U54X	HLL36150U54X	HRL36150U54X
			250 A ⁴	JDL36250U54X	JGL36250U54X	JJL36250U54X	JLL36250U54X	JRL36250U54X
100% Rate	d Circuit Bre	akers, 3P ⁵		•		•		1
			60 A ³	HDL36060CU31X	HGL36060CU31X	HJL36060CU31X	HLL36060CU31X	HRL36060CU31X
Ctandard		2.02	100 A ³	HDL36100CU31X	HGL36100CU31X	HJL36100CU31X	HLL36100CU31X	HRL36100CU31X
Standard	LI	3.22	150 A ³	HDL36150CU31X	HGL36150CU31X	HJL36150CU31X	HLL36150CU31X	HRL36150CU31X
			250 A ⁴	JDL36250CU31X	JGL36250CU31X	JJL36250CU31X	JLL36250CU31X	JRL36250CU31X
-			60 A ³	HDL36060CU33X	HGL36060CU33X	HJL36060CU33X	HLL36060CU33X	HRL36060CU33X
		0.002	100 A ³	HDL36100CU33X	HGL36100CU33X	HJL36100CU33X	HLL36100CU33X	HRL36100CU33X
Standard	LSI	3.282	150 A ³	HDL36150CU33X	HGL36150CU33X	HJL36150CU33X	HLL36150CU33X	HRL36150CU33X
			250 A ⁴	JDL36250CU33X	JGL36250CU33X	JJL36250CU33X	JLL36250CU33X	JRL36250CU33X
			60 A ³	HDL36060CU43X	HGL36060CU43X	HJL36060CU43X	HLL36060CU43X	HRL36060CU43X
A		5.04	100 A ³	HDL36100CU43X	HGL36100CU43X	HJL36100CU43X	HLL36100CU43X	HRL36100CU43X
Ammeter	151	5.2A	150 A ³	HDL36150CU43X	HGL36150CU43X	HJL36150CU43X	HLL36150CU43X	HRL36150CU43X
			250 A ⁴	JDL36250CU43X	JGL36250CU43X	JJL36250CU43X	JLL36250CU43X	JRL36250CU43X
			60 43	HDL36060CU53X	HGL36060CU53X	HJL36060CU53X	HLL36060CU53X	HRL36060CU53X
F		E 0E	100 A ³	HDL36100CU53X	HGL36100CU53X	HJL36100CU53X	HLL36100CU53X	HRL36100CU53X
Energy I	LSI	5.2E	150 A ³	HDL36150CU53X	HGL36150CU53X	HJL36150CU53X	HLL36150CU53X	HRL36150CU53X
			250 A ⁴	JDL36250CU53X	JGL36250CU53X	JJL36250CU53X	JLL36250CU53X	JRL36250CU53X

¹ UL Listed/CSA Certified as current limiting circuit breakers.

 2 $\,$ 3P circuit breakers with this trip unit can be used for 2P applications.

³ Standard Lug Kit: AL150HD Terminal Wire Range: 14–3/0 AWG Al or Cu

⁴ Standard Lug Kit: AL250JD Terminal Wire Range: 3/0 AWG-350 kcmil Al or Cu

For smaller wire range (4–4/0 AWG AI or Cu), replace the lug's wire binding screws with the larger binding screws provided. ⁵ 100% rated circuit breakers have copper lugs and can be used with copper wire only.

28 01/2013

SQUARE D

Table 17:	J-Frame 250 A Mission Critical Electronic T	Γrip UL Rated Circuit Breakers
	(3P, 480Y/277 Vac, 50/60 Hz) With Factory S	Sealed Trip Unit Suitable for Reverse Connection

Ele	ctronic Trip	Unit	Sensor	Interrupting Rating ¹								
Туре	Function	Trip Unit	Rating	D	G	J	L					
Standard (80	%) Rated Circu	uit Breakers, 3	P	•	·	•						
Standard	LI	3.2-W	250 A	JDL34250WU31X	JGL34250WU31X	JJL34250WU31X	JLL34250WU31X					
Standard	LSI	3.2S-W	250 A	JDL34250WU33X	JGL34250WU33X	JJL34250WU33X	JLL34250WU33X					
Ammeter	LSI	5.2A-W	250 A	JDL34250WU43X	JGL34250WU43X	JJL34250WU43X	JLL34250WU43X					
Energy	LSI	5.2E-W	250 A	JDL34250WU53X	JGL34250WU53X	JJL34250WU53X	JLL34250WU53X					
Ammeter	LSIG	6.2A-W	250 A	JDL34250WU44X	JGL34250WU44X	JJL34250WU44X	JLL34250WU44X					
Energy	LSIG	6.2E-W	250 A	JDL34250WU54X	JGL34250WU54X	JJL34250WU54X	JLL34250WU54X					

1

Standard Lug Kit: AL250JD Terminal Wire Range: 3/0 AWG–350 kcmil Al or Cu For smaller wire range (4–4/0 AWG Al or Cu), replace the lug's wire binding screws with the larger binding screws provided.

29

PowerPact H-, J-, and L-frame Circuit Breaker Trip Units

	Micrologic	Trip Unit (X =	= Standard F	eature, O = A	Available Op	tion
Features	Stan	dard	Amn	neter	Ene	ergy
	3.2/3.3	3.2S/3.3S	5.2A/5.3A	6.2A/6.3A	5.2E/5.3E	6.2E/6.3E
LI	Х					
LSI ¹		X	Х		Х	
LSIG/Ground Fault Trip ²				Х		Х
Ground-Fault Alarm Trip				Х		Х
Current Settings Directly in Amperes	Х	Х	Х	Х	Х	Х
True RMS Sensing	Х	Х	Х	Х	Х	Х
UL Listed	Х	Х	Х	Х	Х	Х
Thermal Imaging	Х	Х	Х	Х	Х	Х
LED for Long-Time Pickup	Х	Х	Х	Х	Х	Х
LED for Long-Time Alarm	Х	Х	Х	Х	Х	Х
LED Green "Ready" Indicator	Х	Х	Х	Х	Х	Х
Up to 12 Alarms Used Together			Х	Х	Х	Х
Digital Ammeter			Х	Х	Х	Х
Zone-Selective Interlocking ³			Х	Х	Х	Х
Communications	0	0	0	0	0	0
LCD Display			Х	Х	Х	Х
Front Display Module FDM121			0	0	0	0
Advanced User Interface			Х	Х	Х	Х
Neutral Protection			Х	Х	Х	Х
Contact Wear Indication ⁴			Х	Х	Х	Х
Incremental Fine Tuning of Settings			Х	Х	Х	Х
Load Profile ⁴ , ⁵	1		Х	Х	Х	Х
Power Measurement					Х	Х
Power Quality Measurements					Х	Х

Table 12: Micrologic Trip Unit Features

¹ The LSI with 3.2S/3.3S trip units have fixed short time and long time delays.

² Requires neutral current transformer on three-phase four-wire loads.

³ ZSI for H/J-frame devices is only OUT. ZSI for L-frame devices is IN and OUT.

⁴ Indication available using the communication system only.

 5 % of hours in 4 current ranges: 0–49%, 50–79%, 80–89%, and >90% $\rm I_n.$

Thermal-Magnetic or Electronic Trip Unit?

Thermal-magnetic trip units (available on H- and J-frame circuit breakers only) protect against overcurrents and short-circuits using tried and true techniques. For applications requiring installation optimization and energy efficiency, electronic trip units offering more advanced protection functions combined with measurements.

Trip units using digital electronics are faster as well as more accurate. Wide setting ranges make installation upgrades easier. Designed with processing capabilities, Micrologic trip units can provide measurement information and device operating assistance. With this information, users can avoid or deal more effectively with disturbances and can play a more active role in system operation. They can manage the installation, anticipate events and plan any necessary servicing.

		H- <mark>, J-Frame</mark>		L-Frame
Trip Unit Type	Trip Unit	Trip Unit	Trip Unit	Trip Unit
Distribution Protection Thermal-Magnetic	T-M	250A 500 1 1 1 1 1 1 1 1 1	N/A	
Distribution Protection LI	Micrologic 3.2 and 3.2-W		Micrologic 3.3 and 3.3-W	ن المحافظ ا المحافظ المحافظ المحاف المحافظ المحافظ المحاف المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المح
Distribution Protection LSI Fixed ST and LT delays	Micrologic 3.2S and 3.2S-W		Micrologic 3.3S and 3.3S-W	3.38 Micrologic Image: Second sec
Distribution Protection LSI + Ammeter	Micrologic 5.2 A and 5.2 A-W		Micrologic 5.3 A and 5.3 A-W	5.3 A Micrologic Micrologic
Distribution Protection LSI + Energy Monitoring	Micrologic 5.2 E and 5.2 E-W		Micrologic 5.3 E and 5.3 E-W	
Distribution Protection LSIG + Ammeter	Micrologic 6.2 A and 6.2 A-W		Micrologic 6.3 A and 6.3 A-W	6.3 A Micrologie
Distribution Protection LSIG + Energy Monitoring	Micrologic 6.2 E and 6.2 E-W		Micrologic 6.3 E and 6.3 E-W	
Motor Circuit Protection Magnetic Only	М	PA BUT Transforme de Nature Para de	N/A	
Motor Protection Micrologic 1 M	N/A		Micrologic 1.3M	1.3 M Morelogic
Motor Protection Micrologic 2 M	Micrologic 2.2 M		Micrologic 2.3 M	2.2M Micrologic

Table 62: Trip Unit Availability

NOTE: W = mission critical trip unit.

Figure 110: Micrologic 3.2S and 3.2S-W Electronic Trip Unit Long Time / Short Time Trip Curve

PowerPact H-, J-, and L-Frame Circuit Breakers Trip Curves

Figure 111: Micrologic 3.2, 3.2-W, 3.2S, 3.2S-W, 5.2A, 5.2A-W, 5.2E, 5.2E-W, 6.2A, 6.2A-W, 6.2E, and 6.2E-W Electronic Trip Curve Instantaneous Trip Curve

MICROLOGIC[™] ELECTRONIC TRIP UNITS Micrologic[™] 3.2, 3.2-W, 3.2S, 3.2S-W, 5.2A, 5.2A-W, 5.2E, 5.2E-W, 6.2A, 6.2A-W, 6.2E, and 6.2E-W Instantaneous Trip Curve 250A J-Frame

The time-current curve information is to be used for application and coordination purposes only.

Notes:

- There is a thermal-imaging effect that can act to shorten the long-time delay. The thermal imaging effect comes into play if a current above the long-time delay pickup value exists for a time and then is cleared by the tripping of a downstream device or the circuit breaker itself. A subsequent overload will cause the circuit breaker to trip in a shorter time than normal. The amount of time delay reduction is inverse to the amount of time that has elapsed since the previous overload. Approximately 20 minutes is required between overloads to completely reset thermal-imaging.
- Total clearing times shown include the response times of the trip unit, the circuit breaker opening, and the extinction of the current.
- 3. In = Maximum dial setting of Ir. 250A J-Frame: In = 250A = Max Ir setting
- Curves apply from -35°C to +70°C (-31°F to +158°F) ambient temperature.

CERTIFICATE OF COMPLIANCE SEISMIC DESIGN OF NONSTRUCTURAL COMPONENTS AND SYSTEMS

Certification No.

VMA-51071-01C (Revision 10)

Expiration Date: 6/30/2024

Certification Parameters:

The nonstructural products (mechanical and/or electrical components) listed on this certificate are CERTIFIED¹ FOR SEISMIC APPLICATIONS in accordance with the following building code² releases.

IBC 2018, 2015, 2012

The following model designations, options, and accessories are included in this certification. Reference report number VMA-51071-01 as issued by The VMC Group for a complete list of certified models, included accessories/options, and certified installation methods.

Cummins Power Generation, Inc.; Diesel Gensets Commercial Series; 10kW-200kW

The above referenced equipment is **APPROVED** for seismic application when properly installed³, used as intended, and contains a Seismic Certification Label referencing this Certificate of Compliance⁴. As limited by the tabulated values, below grade, grade, and roof-level installations, installations in essential facilities, for life safety applications, and/or of equipment containing hazardous contents are permitted and included in this certification with an Equipment Importance Factor assigned as I_p =1.5. The equipment is qualified by successful seismic shake table testing at the nationally recognized Dynamic Certification Laboratories under the witness of the ISO Accredited Product Certification Agency, the VMC Group.

Certified Seismic Design Levels										
	Importance $I_p \le 1.5$	z/h ≤ 1.0	z/h = 0.0							
IBC	Soil Classes A-E Risk Categories I-IV Design Categories A-F	S _{DS} ≤ 2.000 g	S _{DS} ≤ 2.500 g							

Certified Seismic Installation Methods

Rigid Mounting From Unit Base To Rigid Structure

HEADQUARTERS

113 Main Street Bloomingdale, NJ 07403 Phone: 973.838.1780 Toll Free: 800.569.8423 Fax: 973.492.8430

102S-103387 Rev18

CALIFORNIA 180 Promenade Circle Suite 300 Sacramento, CA 95834 Phone: 916.634.7771

TEXAS

11930 Brittmoore Park Drive Houston, TX 77041 Phone: 713.466.0003 Fax: 713.466.1355 thevmcgroup.com

CERTIFICATE OF COMPLIANCE SEISMIC DESIGN OF NONSTRUCTURAL COMPONENTS AND SYSTEMS

Certified Product Table:

Model	Power Rating	RPM	Max Length (in)	Max Width (in)	Max Height (in)	Max Weight with Enclosure (lbs.)	S _{DS} (g) @ z/h = 0.0	S _{DS} (g) @ z/h = 1.0
C10 D6	10 kW	 		 		4300		
C15 D6	15 kW	1 	98	 		4400		
C20 D6	20 kW	1	 	 2 4	00	4470	2	n
C25 D6	25 kW	1 	 	34 	00	5890	2	2
C30 D6	30 kW	1 	 101	34 1		5930		
C35 D6	35 kW	1800	 3 	 		5960		
C40 D6	40 kW	1 	 	 		6140		
C50 D6	50 kW	1 	 			6260		
C60 D6	60 kW	1 	 	 				
C50 D6C	50 kW	1 	 	 		8943		
C60 D6C	60 kW	 	170	40	104	8990		
C80 D6C	80 kW	1 	1	 		9040	25	25
C100 D6C	100 kW] 	 	 		9216	2.5	2.5
C125 D6C	125 kW	 	 	 		9300		
C125 D6D		 	 	 				
C150 D6D	150 kW] 	180	71	111	14300		
C175 D6D	175 kW	 	 	 				
C200 D6D	200 kW	 	 	 				

Group	Туре	S _{DS} (z/h=0)	S _{DS} (z/h=1)	A _{Flex-H}	A _{Rig-H}	A _{Flex-V}	A _{Rig-V}	F_p/W_p
Seismic	AC156	2.00	2.00	3.20	2.40	1.33	0.53	1.44
	 	2.50	1 	 	 	1.67	0.67	

VMC GROUP

THE POWER OF TOGETHER™

This certification includes the open generator set and the enclosed generator set when installed with or without the sub-base tank. This certification also includes the sub-base tank as a stand-alone accessory. The generator set and included options shall be a catalogue design and factory supplied. The generator set and applicable options shall be installed and attached to the building structure per the manufacturer supplied seismic installation instructions. This certification excludes all non-factory supplied accessories, including but not limited to mufflers, isolation/restraint devices, remote control panels, remote radiators, pumps and other electrical/mechanical components.

VMA-51071-01C (Revision 10) Issue Date: Friday, July 3, 2015 Revision Date: Friday, December 3, 2021 Expiration Date: Sunday, June 30, 2024

cummins

CERTIFICATE OF COMPLIANCE SEISMIC DESIGN OF NONSTRUCTURAL COMPONENTS AND SYSTEMS

Notes & Comments:

- 1. All equipment listed herein successfully passed the seismic acceptance criteria for shake testing non-structural components and systems as set forth in the ICC AC-156. The Test Response Spectrum (TRS) enveloped the Required Response Spectrum (RRS) for all units tested. The tested units were representative sample(s) of a contingent of models and all remained captive and structurally sound after the seismic shake simulation. The units also remained functionally operational after the simulation testing as functional testing was completed by the equipment manufacturer before and after the seismic simulations. Although a seismic qualified unit inherently contains some wind resisting capacity, that capacity is undetermined and is excluded from this certification. Snow/Ice loads have been neglected and thus limit the unit to be installed both indoors (covered by an independent protective structure) and out of doors (exposed to accumulating snow/ice) for ground snow loads no greater than 30 psf for all applications.
- 2. The following building codes are addressed under this certification:

VMC GROUP

THE POWER OF TOGETHER"

- IBC 2018 referencing ASCE7-16 and ICC-ES AC-156
- IBC 2015 referencing ASCE7-10 and ICC-ES AC-156
- IBC 2012 referencing ASCE7-10 and ICC-ES AC-156
- 3. Refer to the manufacturer supplied installation drawings for anchor requirements and mounting considerations for seismic applications. Required anchor locations, size, style, and load capacities (tension and shear) may be specified on the installation drawings or specified by a 3rd party. Mounting requirement details such as anchor brand, type, embedment depth, edge spacing, anchor-to-anchor spacing, concrete strength, special inspection, wall design, and attachment to non-building structures must be outlined and approved by the Engineer of Record for the project or building. Structural walls, structural floors, and housekeeping pads must also be seismically designed and approved by the project or building Structural Engineer of Record to withstand the seismic anchor loads as defined on the installation drawings. The installing contractor is responsible for ensuring the proper installation of all anchors and mounting hardware.
- 4. For this certificate and certification to remain valid, this certificate must correspond to the "Seismic Certification Label" found affixed to the unit by the factory. The label ensures the manufacturer built the unit in conformance to the IBC seismic design criteria set forth by the Certified Seismic Qualification Agency, the VMC Group, and meets the seismic design levels claimed by this certificate.
- 5. Mechanical, Electrical, and Plumbing connections to the equipment must be flexibly attached as to not transfer load through the connection. The structural integrity of any conduit, cable trays, piping, ductwork and/or flexible connections is the responsibility of others. This certification does not guarantee the equipment will remain compliant to NEMA, IP, UL, or CSA standards after a seismic event.
- 6. This certificate applies to units manufactured at: 1400 73rd Ave NE, OF 143, Minneapolis, MN 55432
- 7. This certification follows the VMC Group's ISO-17065 Scheme.

fol / A.D.

John P. Giuliano, PE President, VMC Group

VMA-51071-01C (Revision 10) Issue Date: Friday, July 3, 2015 Revision Date: Friday, December 3, 2021 Expiration Date: Sunday, June 30, 2024

PTC	TC® Creo® Parametric 6 5 4 3	2 REL NO LTR NO REVISION ECO-170731 A 1 PRODUCT	ION RELEASE	1 Dwn ckd apvd DAH DAH STAFFENHA	DATE GEN 05MAR18	
						_
	SEISMIC INSTALLATIONS NOTES:					
D	I. THE DESIGN OF POST-INSTALLED ANCHORS IN CONCRETE USED FOR THE COMPONENT ANCHORAGE IS PRE-QUALIFIED FOR SEISMIC APPLICATIONS IN ACCORDANCE WITH "ACI 355.2-07" AND DOCUMENTED IN A REPORT BY A REPUTABLE TESTING AGENCY. (EX. THE EVALUATION SERVICE REPORT ISSUED BY THE INTERNATIONAL CODE COUNCIL)					D
	2. ANCHORS MUST BE INSTALLED TO AN EMBEDMENT DEPTH AS RECOMMENDED IN THE PRE-QUALIFICATION TEST REPORT AS DEFINED IN NOTE I. FOR "CBC 2013" APPLICATIONS.					
	3. ANCHORS MUST BE INSTALLED IN MINIMUM 3000 PSI COMPRESSIVE STRENGTH NORMAL WEIGHT STRUCTURAL CONCRETE. CONCRETE AGGREGATE MUST COMPLY WITH "ASTM C33".					
_	4. ANCHORS MUST BE INSTALLED TO THE TORQUE SPECIFICATION AS RECOMMENDED BY THE ANCHOR MANUFACTURER.					_
	5. ANCHORS MUST BE INSTALLED IN LOCATIONS SPECIFIED ON THIS INSTALLATION DRAWING.					
	6. WASHERS MUST BE INSTALLED AT EACH ANCHOR LOCATION BETWEEN THE ANCHOR HEAD AND EQUIPMENT FOR TENSION LOAD DISTRIBUTION. WASHERS MUST BE TYPE A OR B PLAIN WASHERS MEETING ASME BI8.21.1-2009. WASHER SIZE TO MATCH ANCHOR DIAMETER.					
	7. CONCRETE FLOOR SLAB AND CONCRETE HOUSEKEEPING PADS MUST BE DESIGNED FOR SEISMIC APPLICATIONS IN ACCORDANCE WITH "ACI 318-11".					
С	8. ALL HOUSEKEEPING PAD THICKNESSES MUST BE DESIGNED IN ACCORDANCE WITH THE PRE-QUALIFICATION TEST REPORT AS DEFINED IN NOTE I OR A MINIMUM OF 1.5X THE ANCHOR EMBEDMENT DEPTH, WHICHEVER IS LARGEST (UNLESS NOTED OTHERWISE).					С
	9. ALL HOUSEKEEPING PADS MUST BE DOWELLED OR CAST INTO THE BUILDING STRUCTURAL FLOOR SLAB AND DESIGNED FOR SEISMIC APPLICATION PER "ACI 318-II" AND AS APPROVED BY THE STRUCTURAL ENGINEER OF RECORD.					
	IO. FLOOR MOUNTED EQUIPMENT (WITH OR WITHOUT A HOUSEKEEPING PAD) MUST BE INSTALLED TO A STEEL REINFORCED STRUCTURAL CONCRETE FLOOR THAT IS SEISMICALLY DESIGNED AND APPROVED BY THE ENGINEER OF RECORD TO RESIST ALL LOADS FROM EQUIPMENT BEING ANCHORED TO THE FLOOR.					
\rightarrow	II. COORDINATE REINFORCEMENT OF SUPPORT STRUCTURE WITH EQUIPMENT ANCHOR LOCATIONS.					\leftarrow
	12. ATTACHING SEISMIC CERTIFIED EQUIPMENT TO FLOOR OTHER THAN THOSE DESIGNED TO ACCEPT THE SEISMIC LOADS FROM CERTIFIED EQUIPMENT BY THE STRUCTURAL ENGINEER OF RECORD IS PROHIBITED.					
	13. INSTALLATION ONTO A STEEL ROOF STRUCTURE OR MANUFACTURED STEEL CURB SHALL BE COORDINATED WITH THE STRUCTURAL ENGINEER OF RECORD.					
В	14. CONNECTIONS TO THE EQUIPMENT, INCLUDING BUT NOT LIMITED TO CONDUIT, WIRING FROM CABLE TRAYS, OTHER ELECTRICAL SERVICES OR OTHER CONNECTIONS, ARE THE RESPONSIBILITY OF THE INSTALLING CONTRACTOR AND BEYOND THE SCOPE OF THIS DOCUMENT. FLEXIBLE ATTACHMENTS MUST BE USED FOR SEISMIC CONNECTIONS TO ISOLATED COMPONENTS OR ISOLATED EQUIPMENT. THE FLEXIBLE ATTACHMENT MUST PROVIDE FOR ENOUGH RELATIVE DISPLACEMENT TO REMAIN CONNECTED TO THE EQUIPMENT AND FUNCTIONAL DURING AND AFTER A SEISMIC EVENT.					в
	15. REFER TO GENSET OUTLINE DRAWINGS FOR WEIGHT, CG AND CONFIGURATION SPECIFICS.					
-						-
A						A
	UNLESS OTHERWISE SPECIFIED, ALL sm DIMENSIONS ARE IN MILLIMETERS f X ± 1 0.00-4.99+0.15/-0.08 x ± 1 0.00-9.99+0.15/-0.01	ито A05INI57 DO NOT SCALE PRINT CKD D HOFMEISTER APVD G STAFFFNHAGF		UMMINS POWER GENERAT	ion F T	-
	$\begin{bmatrix} -X \pm 0.8 & \frac{9}{2} & & 0.00 - 17.49 + 0.25/ \cdot 0.13 \\ -XX \pm 0.38 & & 17.50 - 24.99 + 0.30/ \cdot 0.13 \\ \end{bmatrix}$ ANG TOL: $\pm 1.0^{\circ}$ SCALE: /	- CONFIDENTIAL - PROPERTY OF CUMMINS PROPERTY OF CUMMINS FOR INTER GININGAL OF CUMMINS FOR INTER GINAL OF CUMINS FOR INTER GINAL OF CUMMINS FOR INTER GINAL OF CUMMINS FOR INTER GINAL OF CUMUNS FOR INTER FOR INTER CUMUNS FOR INTER FOR INTER FOR INTER CUMUNS FOR INTER FOR INTER	SITE CODE SEISMIC	58C559	- ' SHEET DHG REV Ι OF 6 Δ	- -
	6 5 4 ↑ 3	2		1		

PTC® Creo® Parametric 6		5	I	4	\downarrow	3		2	REL NO LTR NO R ECO-170731 A I F	 evision PRODUCTION RELEASE	1 DWN CKD APVD DATE DAH DAH STAFFENHAGEN O 5MAR I 8]
												-
D												D
				GRADE MOUNT	ED GENERATO	R SETS						
	CUMMINS	CONFIGURATION		1	АТТАСНМЕ	NT TO CONCRETE				_		
	GENSEI MODEL		CBC 2018 EVALUATION PARAMETER:	IBC 2018 EVALUATION PARAMETERS	CONCRETE ANCHORS	ANCHOR EMBEDMENT	ANCHOR SPACING	DISTANCE TO NEAREST EDGE	CONCRETE SLAB THICKNESS	-		_
	C125D6D C150D6D C175D6D C200D6D	GENERATOR SET WITH OR WITHOUT ENCLOSURE NO FUEL TANK	Sds <= 2.5 p <= 1.5 ap/Rp <= 1.0/1.5 z/h = 0 Ω = 2.5	Sds <= 2.5 p <= 1.5 ap/Rp <= 1.0/1.5 z/h = 0 Ω = 2.5	M I N I	OTE: TYPE OF ANCHOR MUM SLAB THICKNESS	, ANCHOR ATTACHMENT TO BE DESIGNED BY EM	SPECIFICS AND IGINEER OF RECORD.				
c												с
\rightarrow			GRADE/ROOF	F MOUNTED GE	NERATOR SET	S WITH FUEL	. TANKS					¢
		C UM G E N S E	MMINS T MODEL CONFIGU	JRATION CBC 20 EVALUATION P	ATTACH DI8 IBC 2 ARAMETERS EVALUATION P	MENT TO STEEL	STEEL BOLTS					
В		CI CI C2	GENERA WITH OR 25D6D ENCLO 50D6D WITH FUE 75D6D FUEL 00D6D A056 A056 A055	OR SET WITHOUT SURE, L TANKS. Ip <= I	2.0 Sds <= 1.5 Ip <= 1.0/1.5 ap/Rp <= .0 z/h <=	2.5 5 DIAMETER 0/1.5 THE BA 1.0 OR FUE	(OTY 6) 5/8" ASTM A325N OR A490 TH WASHERS THROUGH SE RAIL MOUNTING HOL L TANK MOUNTING HOLI	BOLTS ES ES.				В
A												A
6	1	5		4	↑	3	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	PECIFIED. ALL MILLIMETERS 4.99 +0.15/-0.08 9.99 +0.25/-0.13 24.99 +0.30/-0.13 ILE: / PORFETT C PORFETT C 24.99 +0.30/-0.13 BORDETT C	N157 CK0 D HOFMEI CK0 D HOFMEI APVD G STAFFE DATE 05MAR18 ENTRAL F CUMAIKS F CUMAIKS THOM GROUP CRAACING SEC A	STER STER NHAGEN SITE CODE SITE CODE SI	MINS POWER GENERATION LATION, GENSET OUIREMENTS 8C559 2ºré Å	-

UNLESS O

Regulatory Review and Approval is required prior to changing this item per PGG 1-01-01-116. This item impacts compliance with these External Regulations: IBC,OSHPD

														1								_
-	ECO	rel - 7	NO 073	1	LTR A	NO I	PROD	on UCTIO	ON R	ELEASE					D	n Ah	ckd DAH	AP STAFFE	'VD NHAGEN	0.5M/	TE ARI8	
				+																		
L																						
																						_
																						יי
																						_
P		NI 7	- ,	с I-		~																
٢	ME	IN I		S M	11	J																ſ
																						ľ
J(ЭH																					
V	NIT	ΓH	W	A	SH	ER																
																						€
RE	3 / F	RA	٩M	E	A	S.	SPE	CIF	ΙE	DВY												
ΑL	- E	N(31	NE	Ē	R (ЭF	REC	OR	D												
																						в
																						_
																						A
15	57		DWN	D	нс) F M F	IST	R					A ²					.				
LE	PRIN	T d	CKD	D	HC)F ME		R		anutitie		10		WININS	P0	WE	н (ч		
\in	1		APVD DATE	G	SТ 5ма	AFF RI8	ENH/ B	AGEN	_	SITE CO		N S I SM	IA IC R	_ L A equir	(E ME I) (NTS	۷,(۶	эЕN	SЕ	I		
_		-1			1.7.44				-		-											1
NT	IAL .	P F	OR IN F DIM OLERA	TERP ENSI NCIN	RETAT ONING G. SE	ION AND E	ARF	ĩÕ₩		PGF	size		A 0 !	5865	559					SHEET 6 OF 6	D¥NG REV ∆	

Drawing Name: A060G757 Revision: A Part Name: A060G756 Revision: A ECO-176532 Sheet 1 of 4

												1						_	
	REL ECO-I	NO 76532	REV	NO I	PRODI	JCTION	RELE	ASE					D M N	CKD IDAH	GIL	PVD LETT	DATE IOAPRIA	8	
													+						
l																			
																			D
																			_
1																			
	3																		
																			с
																			\leftarrow
																			в
$\left(\right)$																			
																		_	-
																			A
55J59		DWN [) HO	FME	ISTE	R		mins		(CUM	VINS	Pow	ER (Genei	RATION	I	1	
3.ALE 		APVD [, но) GI	LLE	TT	n		œ	OU	ΤL	I N	Ε,(GE N	SE	Γ			1	
		DATE FOR INTE	0 A P	RI8	IRST USED	0N	SIT	E CODE	OPT DIG SIZE	I ON S	<u> </u>	007	E ^				CAD SHEET	-	
OF CUNNIT	NNS, OR NS INC.	TOLERANC ASME Y	NG, SĒ 4.5-2	E 009	<u>a R R</u>	UW		זט	D	A	Uΰ	107 1	JD				2 OF 3		

Section 5 – Startup & Warranty

Cummins Sales and Service Customer / Contractor Pre Commissioning Inspection Form

The intent of this form is for the contractor to prepare for equipment to be commissioned by a certified Cummins Field Service Power Generation Technician. Filling out this form is required and will minimize delays due to equipment failing to meet requirements. Completing this checklist in its entirety should minimize the need for additional billing beyond the previously provided commissioning quote.

The items listed are the responsibility of the contractor and not Cummins Sales and Service.

Project Name/End User:			
Contractor:			
Address:	Contact:		
Business Phone:	Cell Phone:		
Email:			
ON SITE INFORMATION			
On-Site Contact Information:			
Address:			
Time Requested Onsite:			
Sub location of Generator (ie. Ro	of, basement, floor):		
Does the facility have the following:	Loading Dock Elevator		
Access (from truck and load bank	parking to generator in feet):		
Parking: Is parking available on-sit	e for service truck: Yes No		
Permits: Have all necessary air qu	ality and local permits been secured: Yes	No	N/A
Fuel Tank Testing: Is fuel tank tes	ting required: Yes No		
If yes when is the inspector	scheduled for:		

ON SITE INFORMATION CONTINUED

Is the facility occupied and is customer aware there will be power outages after generator is started?

Will there be any site safety training needed for technician prior to beginning? On site contact for training: _____

Will customer representative be on site for operator training?

On site contact for operator training: _

MECHANICAL LOCATION AND PLACEMENT OF THE GENERATOR SET

Generator is properly secured to pad or vibration isolators

Generator Enclosure and/or Room is free of all debris

No airflow obstructions to the engine or generator are present for cooling combustion

(See Cummins T-030 or Installation manual of generator set)

Room is designed for adequate inlet and outlet airflow

GASEOUS FUEL Natural Gas/LP Vapor/LP Liquid

Natural gas and/or LPG fuel supply is connected.

Fuel pressure after service regulator is: ______inches of H2O

I have read and fully understand the fuel requirements for this equipment, I am verifying that the piping and fuel supply meets or exceeds those requirements. I also understand failure to meet the requirements will result in additional charges.

Contractor "requestor" Signature

Date

DIESEL FUELED GENERATORS

Flexible fuel connections, (supply and return) are connected to generator and piping.

Day tank installed, wired and plumbed (lines free of obstruction) to genset and main fuel tank if applicable. Only black iron pipe for fuel lines, never use copper or galvanized pipe.

All tanks filled with enough fuel to perform startup and testing.

A return line from engine to day tank and day tank to main tank should be in place

EXHAUST SYSTEM YES NA NO Image: Second system in the system is second system is second

GENERATOR ELECTRICAL CONNECTIONS

GENERATOR ELECTRICAL CONNECTIONS CONTINUED

YES NA NO

Annunciator mounted in a location where someone can observe a fault of the remote generator system

Where is annunciator located? _____

Are there additional ancillary devices/equipment that need to be integrated into the system? If yes, please define_____

Battery charger mounted (free of vibration, weather, accessible for an operator to observe easily) and connected to the appropriate AC and DC wiring to operate the charger.

TRANSFER SWITCH ELECTRICAL CONNECTIONS

Conductors connected for Utility, Load and Emergency

Remote start interconnection **<u>stranded</u>** wiring is installed between the generator set and the automatic transfer switch(s).

Four Pole Transfer Switch: Is generator neutral grounded?

DAY OF STARTUP

YES	NA	NO

Training of facility personnel will be done on the same day as start up. Additional trips for operational training will be an additional charge. Can transfer switch be tested at time of generator startup? (There will be a power interruption) **Note:** *After hours testing could result in additional charges.* If the associated switchgear and/or ATS(s) are not provided by Cummins, will the manufacturer's representative be on site?

Exercise with or without load? _____

If known, Transfer Time delay set recommendations Generator Set to exercise Day:_____

Contractor "requestor" Signature

Printed Name

Date: _____

Please complete this form and return to schedule start up, if not returned within 5 business days prior to scheduled startup it may be delayed. I understand that the start-up date may have to be rescheduled at my expense if the above items have not been completed properly.

Time:

Warranty Statement

Global Commercial Warranty Statement

Generator Set

Limited Warranty

Commercial Generating Set

This limited warranty applies to all Cummins Power Generation® branded commercial generating sets and associated accessories (hereinafter referred to as "Product").

This warranty covers any failures of the Product, under normal use and service, which result from a defect in material or factory workmanship.

Warranty Period:

The warranty start date[†] is the date of initial start up, first rental, demonstration or 18 months after factory ship date, whichever is sooner. See table for details.

Continuous Power (COP) is defined as being the maximum power which the generating set is capable of delivering continuously whilst supplying a constant electrical load when operated for an unlimited number of hours per year. No overload capability is available for this rating.

Prime Power (PRP) is defined as being the maximum power which a generating set is capable of delivering continuously whilst supplying a variable electrical load when operated for an unlimited number of hours per year. The permissible average power output over 24 hours of operation shall not exceed 70% of the PRP. For applications requiring permissible average output higher than stated, a COP rating should be used.

Limited-Time Running Power (LTP) is defined as the maximum power available, under the agreed operating conditions, for which the generating set is capable of delivering for up to 500 hours of operation per year.

Emergency Standby Power (ESP) is defined as the maximum power available during a variable electrical power sequence, under the stated operating conditions, for which a generating set is capable of delivering in the event of a utility power outage or under test conditions for up to 500 hours of operation per year. The permissible average power output over 24 hours of operation shall not exceed 70% of the ESP.

Environmental Protection Agency – Stationary Emergency (EPA-SE) is defined as being the maximum power available during a variable electrical power sequence, under the stated operating conditions, for which a generator set is capable of delivering in the event of a utility power outage or under test conditions and used in strict accordance with the EPA NSPS for stationary engines, 40 CFR part 60, subparts IIII and JJJJ, where a reliable utility must be present. The permissible average power output over 24 hours of operation shall not exceed 70% of the EPA-SE.

Data Center Continuous (DCC) is defined as the maximum power which the generator is capable of delivering continuously to a constant or varying electrical load for unlimited hours in a data center application.

		uis misij	
Rating	Months	Max. Hours	
COP	12	Unlimited	
PRP	12	Unlimited	
LTP	12	500 hrs	
ESP	24	1000 hrs	
EPA-SE	24	Unlimited	
DCC	24	Unlimited	

Base Warranty Coverage Duration (Whichever occurs first)

[†] Warranty start date for designated rental and oil and gas model Products is determined to be date of receipt of Product by the end customer.

Cummins Power Generation® Responsibilities:

In the event of a failure of the Product during the warranty period due to defects in material or workmanship, Cummins Power Generation® will only be responsible for the following costs:

- All parts and labor required to repair the Product.
- Reasonable travel expenses to and from the Product site location.
- Maintenance items that are contaminated or damaged by a warrantable failure.

Owner Responsibilities:

The owner will be responsible for the following:
- Notifying Cummins Power Generation® distributor or dealer within 30 days of the discovery of failure.
- Installing, operating, commissioning and maintaining the Product in accordance with Cummins Power Generation®'s published policies and guidelines.
- Providing evidence for date of commissioning.
- Providing sufficient access to and reasonable ability to remove the Product from the installation in the event of a warrantable failure.
- Incremental costs and expenses associated with Product removal and reinstallation resulting from non-standard installations.
- Costs associated with rental of generating sets used to replace the Product being repaired.
- Costs associated with labor overtime and premium shipping requested by the owner.
- All downtime expenses, fines, all applicable taxes, and other losses resulting from a warrantable failure.

Limitations:

This limited warranty does not cover Product failures resulting from:

- Inappropriate use relative to designated power rating.
- Inappropriate use relative to application guidelines.
- Inappropriate use of an EPA-SE application generator set relative to EPA's standards.
- Normal wear and tear.
- Improper and/or unauthorized installation.
- Negligence, accidents or misuse.
- Lack of maintenance or unauthorized repair.
- Noncompliance with any Cummins Power Generation® published guideline or policy.
- Use of improper or contaminated fuels, coolants or lubricants.
- Improper storage before and after commissioning.
- Owner's delay in making Product available after notification of potential Product problem.
- Replacement parts and accessories not authorized by Cummins Power Generation®.
- Use of Battle Short Mode.
- Owner or operator abuse or neglect such as: operation without adequate coolant or lubricants; overfueling; overspeeding; lack of maintenance to lubricating, cooling or air intake systems; late servicing and maintenance; improper storage, starting, warm-up, run-in or shutdown practices, or for progressive damage resulting from a defective shutdown or warning device.

 Damage to parts, fixtures, housings, attachments and accessory items that are not part of the generating set.

This limited warranty does not cover costs resulting from:

- Difficulty in gaining access to the Product.
- Damage to customer property.

A "Data center" is defined as a dedicated facility that house computers and associated equipment for data storage and data handling.

Reliable utility is defined as utility power without routine or regularly scheduled black-outs.

Please contact your local Cummins Power Generation® Distributor for clarification concerning these limitations.

CUMMINS POWER GENERATION® RIGHT TO FAILED COMPONENTS:

Failed components claimed under warranty remain the property of Cummins Power Generation®. Cummins Power Generation® has the right to reclaim any failed component that has been replaced under warranty.

Extended Warranty:

Cummins Power Generation® offers several levels of Extended Warranty Coverage. Please contact your local Cummins Power Generation ® Distributor for details.

www.power.cummins.com

THE WARRANTIES SET FORTH HEREIN ARE THE SOLE WARRANTIES MADE BY CUMMINS POWER GENERATION ® IN REGARD TO THE PRODUCT. CUMMINS POWER GENERATION® MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, OR OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT IS CUMMINS POWER GENERATION® LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES.

This limited warranty shall be enforced to the maximum extent permitted by applicable law. This limited warranty gives the owner specific rights that may vary from state to state or from jurisdiction to jurisdiction.

Product Model Number:	
Product Serial Number:	
Date in Service:	